About: Electrochemical Characterization of TiO2 Blocking Layers for Dye-Sensitized Solar Cells     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Thin compact layers of TiO2 are grown by thermal oxidation of Ti, by spray pyrolysis, by electrochemical deposition, and by atomic layer deposition. These layers are used in dye-sensitized solar cells to prevent recombination of electrons from the substrate (FTO or Ti) with the hole-conducting medium at this interface. The quality of blocking is evaluated electrochemically by methylviologen, ferro/ferricyanide, and spiro-OMeTAD as the model redox probes. Two types of pinholes in the blocking layers are classified, and their effective area is quantified. Frequency-independent Mott–Schottky plots are fitted from electrochemical impedance spectroscopy. Certain films of the thicknesses of several nanometers allow distinguishing the depletion layer formation both in the TiO2 film and in the FTO substrate underneath the titania film. The excellent blocking function of thermally oxidized Ti, electrodeposited film (60 nm), and atomic-layer-deposited films (>6 nm) is documented by the relative pinhole area of less than 1%. However, the blocking behavior of electrodeposited and atomic-layer-deposited films is strongly reduced upon calcination at 500 °C. The blocking function of spray-pyrolyzed films is less good but also less sensitive to calcination. The thermally oxidized Ti is well blocking and insensitive to calcination.
  • Thin compact layers of TiO2 are grown by thermal oxidation of Ti, by spray pyrolysis, by electrochemical deposition, and by atomic layer deposition. These layers are used in dye-sensitized solar cells to prevent recombination of electrons from the substrate (FTO or Ti) with the hole-conducting medium at this interface. The quality of blocking is evaluated electrochemically by methylviologen, ferro/ferricyanide, and spiro-OMeTAD as the model redox probes. Two types of pinholes in the blocking layers are classified, and their effective area is quantified. Frequency-independent Mott–Schottky plots are fitted from electrochemical impedance spectroscopy. Certain films of the thicknesses of several nanometers allow distinguishing the depletion layer formation both in the TiO2 film and in the FTO substrate underneath the titania film. The excellent blocking function of thermally oxidized Ti, electrodeposited film (60 nm), and atomic-layer-deposited films (>6 nm) is documented by the relative pinhole area of less than 1%. However, the blocking behavior of electrodeposited and atomic-layer-deposited films is strongly reduced upon calcination at 500 °C. The blocking function of spray-pyrolyzed films is less good but also less sensitive to calcination. The thermally oxidized Ti is well blocking and insensitive to calcination. (en)
Title
  • Electrochemical Characterization of TiO2 Blocking Layers for Dye-Sensitized Solar Cells
  • Electrochemical Characterization of TiO2 Blocking Layers for Dye-Sensitized Solar Cells (en)
skos:prefLabel
  • Electrochemical Characterization of TiO2 Blocking Layers for Dye-Sensitized Solar Cells
  • Electrochemical Characterization of TiO2 Blocking Layers for Dye-Sensitized Solar Cells (en)
skos:notation
  • RIV/61388955:_____/14:00431051!RIV15-GA0-61388955
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • I, P(GA13-07724S)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 14103
http://linked.open...ai/riv/idVysledku
  • RIV/61388955:_____/14:00431051
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • TiO2; dye-sensitized solar cells; electrochemistry (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [53F22DE6CC8F]
http://linked.open...v/mistoKonaniAkce
  • Hnanice
http://linked.open...i/riv/mistoVydani
  • Prague
http://linked.open...i/riv/nazevZdroje
  • New trends in application of photo and electro catalysis. Proceedings of the 6th Czech-Austrian workshop
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Kavan, Ladislav
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
number of pages
http://purl.org/ne...btex#hasPublisher
  • Vysoká škola chemicko-technologická v Praze
https://schema.org/isbn
  • 978-80-7080-886-3
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 77 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software