Attributes | Values |
---|
rdf:type
| |
rdfs:seeAlso
| |
Description
| - CRYSTAL aims at fostering Europe’s leading edge position in embedded systems engineering in particular regarding quality and cost effectiveness of safety-critical embedded systems and architecture platforms. Its overall goal is to enable sustainable paths to speed up the maturation, integration, and cross-sectoral reusability of technological and methodological bricks of the factories for safety-critical embedded systems engineering in the areas of transportation (aerospace, automotive, and rail) and healthcare providing a critical mass of European technology providers. CRYSTAL perfectly fits to other ARTEMIS projects, sharing the concept of a reference technology platform (RTP) as a consistent set of integration principles and seamless technology interoperability standards. Based on the methodologies of a service-oriented architecture and the results of previous projects CRYSTAL focuses on an industry-driven approach using cross-domain user stories, domain-specific use cases, public use cases, and technology bricks. This shall have a significant impact to strengthen European competitiveness regarding new markets and societal applications. In building an overall interoperability domain “embedded systems”, CRYSTAL will contribute to establishing a standard for model-based systems engineering in a certification and safety context which is expected to have global impact. By bringing together large enterprises and various industrial domains CRYSTAL will setup a sustainable innovation eco-system. By harmonizing the demands in the development of safety-relevant embedded systems including multi-viewpoint engineering and variability management across different industrial domains, CRYSTAL will achieve a strong acceptance from both vendors and the open-source community. CRYSTAL will drive forward interoperability towards a “de facto” standard providing an interoperable European RTP. (en)
- CRYSTAL aims at fostering Europe’s leading edge position in embedded systems engineering in particular regarding quality and cost effectiveness of safety-critical embedded systems and architecture platforms. Its overall goal is to enable sustainable paths to speed up the maturation, integration, and cross-sectoral reusability of technological and methodological bricks of the factories for safety-critical embedded systems engineering in the areas of transportation (aerospace, automotive, and rail) and healthcare providing a critical mass of European technology providers. CRYSTAL perfectly fits to other ARTEMIS projects, sharing the concept of a reference technology platform (RTP) as a consistent set of integration principles and seamless technology interoperability standards. Based on the methodologies of a service-oriented architecture and the results of previous projects CRYSTAL focuses on an industry-driven approach using cross-domain user stories, domain-specific use cases, public use cases, and technology bricks. This shall have a significant impact to strengthen European competitiveness regarding new markets and societal applications. In building an overall interoperability domain “embedded systems”, CRYSTAL will contribute to establishing a standard for model-based systems engineering in a certification and safety context which is expected to have global impact. By bringing together large enterprises and various industrial domains CRYSTAL will setup a sustainable innovation eco-system. By harmonizing the demands in the development of safety-relevant embedded systems including multi-viewpoint engineering and variability management across different industrial domains, CRYSTAL will achieve a strong acceptance from both vendors and the open-source community. CRYSTAL will drive forward interoperability towards a “de facto” standard providing an interoperable European RTP.
|
Title
| - Critical Systems Engineering Acceleration (en)
- Critical Systems Engineering Acceleration
|
skos:notation
| |
http://linked.open...avai/cep/aktivita
| |
http://linked.open...kovaStatniPodpora
| |
http://linked.open...ep/celkoveNaklady
| |
http://linked.open...datumDodatniDoRIV
| |
http://linked.open...i/cep/druhSouteze
| |
http://linked.open...ep/duvernostUdaju
| |
http://linked.open.../cep/fazeProjektu
| |
http://linked.open...ai/cep/hlavniObor
| |
http://linked.open...vai/cep/kategorie
| |
http://linked.open.../cep/klicovaSlova
| - Interoperability; System Engineering; Safety; Standards; Industry-driven approach (en)
|
http://linked.open...ep/partnetrHlavni
| |
http://linked.open...inujicichPrijemcu
| |
http://linked.open...cep/pocetPrijemcu
| |
http://linked.open...ocetSpoluPrijemcu
| |
http://linked.open.../pocetVysledkuRIV
| |
http://linked.open...enychVysledkuVRIV
| |
http://linked.open...lneniVMinulemRoce
| |
http://linked.open.../prideleniPodpory
| |
http://linked.open...iciPoslednihoRoku
| |
http://linked.open...atUdajeProjZameru
| |
http://linked.open...usZobrazovaneFaze
| |
http://linked.open...ai/cep/typPojektu
| |
http://linked.open...ep/ukonceniReseni
| |
http://linked.open...ep/zahajeniReseni
| |
http://linked.open...tniCyklusProjektu
| |
http://linked.open.../cep/klicoveSlovo
| - Interoperability
- Safety
- Standards
- System Engineering
|
is http://linked.open...vavai/cep/projekt
of | |