About: Harnessing Performance Variability     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Projekt, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • The goal of HARPA is to enable next-generation embedded and high-performance heterogeneous many-cores to cost-effectively confront variations by providing Dependable-Performance: correct functionality and timing guarantees throughout the expected lifetime of a platform under thermal, power, and energy constraints. The HARPA solution employs a cross-layer approach. A middleware implements a control engine that steers software/hardware knobs based on information from strategically dispersed monitors. This engine relies on technology models to identify/exploit various types of platform slack - performance, power/energy, thermal, lifetime, and structural (hardware) - to restore timing guarantees and ensure the expected lifetime amidst time-dependent variations. Dependable-Performance is critical for embedded applications to provide timing correctness; for high-performance applications, it is paramount to ensure load balancing in parallel phases and fast execution of sequential phases. The lifetime requirement has ramifications on the manufacturing process cost and the number of field-returns. The HARPA novelty is in seeking synergies in techniques that have been considered virtually exclusively in the embedded or high-performance domains (worst-case guaranteed partly proactive techniques in embedded, and dynamic best-effort reactive techniques in high-performance). HARPA will demonstrate the benefits of merging concepts from these two domains by evaluating key applications from both segments running on embedded and high-performance platforms.
  • The goal of HARPA is to enable next-generation embedded and high-performance heterogeneous many-cores to cost-effectively confront variations by providing Dependable-Performance: correct functionality and timing guarantees throughout the expected lifetime of a platform under thermal, power, and energy constraints. The HARPA solution employs a cross-layer approach. A middleware implements a control engine that steers software/hardware knobs based on information from strategically dispersed monitors. This engine relies on technology models to identify/exploit various types of platform slack - performance, power/energy, thermal, lifetime, and structural (hardware) - to restore timing guarantees and ensure the expected lifetime amidst time-dependent variations. Dependable-Performance is critical for embedded applications to provide timing correctness; for high-performance applications, it is paramount to ensure load balancing in parallel phases and fast execution of sequential phases. The lifetime requirement has ramifications on the manufacturing process cost and the number of field-returns. The HARPA novelty is in seeking synergies in techniques that have been considered virtually exclusively in the embedded or high-performance domains (worst-case guaranteed partly proactive techniques in embedded, and dynamic best-effort reactive techniques in high-performance). HARPA will demonstrate the benefits of merging concepts from these two domains by evaluating key applications from both segments running on embedded and high-performance platforms. (en)
Title
  • Harnessing Performance Variability
  • Harnessing Performance Variability (en)
skos:notation
  • 7E13025
http://linked.open...avai/cep/aktivita
http://linked.open...kovaStatniPodpora
http://linked.open...ep/celkoveNaklady
http://linked.open...datumDodatniDoRIV
http://linked.open...i/cep/druhSouteze
http://linked.open...ep/duvernostUdaju
http://linked.open.../cep/fazeProjektu
http://linked.open...ai/cep/hlavniObor
http://linked.open...vai/cep/kategorie
http://linked.open.../cep/klicovaSlova
  • high-performance architectures; many-core; thermal related reliability; dependability; adaptive systems; performance and timing analysis; run-time resource management (en)
http://linked.open...ep/partnetrHlavni
http://linked.open...inujicichPrijemcu
http://linked.open...cep/pocetPrijemcu
http://linked.open...ocetSpoluPrijemcu
http://linked.open.../pocetVysledkuRIV
http://linked.open...enychVysledkuVRIV
http://linked.open...lneniVMinulemRoce
http://linked.open.../prideleniPodpory
http://linked.open...iciPoslednihoRoku
http://linked.open...atUdajeProjZameru
http://linked.open...usZobrazovaneFaze
http://linked.open...ai/cep/typPojektu
http://linked.open...ep/ukonceniReseni
http://linked.open...ep/zahajeniReseni
http://linked.open...tniCyklusProjektu
http://linked.open...n/vavai/cep/vyzva
http://linked.open.../cep/klicoveSlovo
  • adaptive systems
  • dependability
  • many-core
  • performance and timing analysis
  • thermal related reliability
  • high-performance architectures
is http://linked.open...vavai/cep/projekt of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 58 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software