About: Sustainable HydrothermaI Manufacturing of Nanomaterials     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Projekt, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • "It is vital that nanomanufacturing routes facilitate an increase in production whilst being ""green"", sustainable, low cost and capable of producing high quality materials. Continuous hydrothermal synthesis is an enabling and underpinning technology that is ready to prove itself at industrial scale as a result of recent breakthroughs in reactor design which suggest that it could now be scaled over 100 tons per annum. Academic specialists with international reputations in reactor modelling and kinetics and metrology will develop the know how needed to scale up the current pilot scale system. Selected project partners with expertise in sustainability modelling and life cycle assessment will quantify the environmental impact and benefits of a process that uses water as a recyclable solvent, whilst producing the highest quality, dispersed and formulated products. In addition to scale up production, the process will be improved through case studies with industrial end users in four key areas – printed electronics with SOVY; surface coatings with CRF, PPG and SOVY; healthcare and medical with ENDOR and CERA; hybrid polymers and materials with ITAP, TopGaN and REPSOL. Further value will be added to the project by working on new materials that have been identified as key future targets but cannot be currently made, or made in significant quantities. The consortium is founded on the principle that the whole value chain (from nanoparticle production to final product) must be involved in the development of the technology. This will not only inform the development stages of the production process but also maximise ""market pull"", rather than simply relying on subsequent ""technology push""." (en)
  • "It is vital that nanomanufacturing routes facilitate an increase in production whilst being ""green"", sustainable, low cost and capable of producing high quality materials. Continuous hydrothermal synthesis is an enabling and underpinning technology that is ready to prove itself at industrial scale as a result of recent breakthroughs in reactor design which suggest that it could now be scaled over 100 tons per annum. Academic specialists with international reputations in reactor modelling and kinetics and metrology will develop the know how needed to scale up the current pilot scale system. Selected project partners with expertise in sustainability modelling and life cycle assessment will quantify the environmental impact and benefits of a process that uses water as a recyclable solvent, whilst producing the highest quality, dispersed and formulated products. In addition to scale up production, the process will be improved through case studies with industrial end users in four key areas – printed electronics with SOVY; surface coatings with CRF, PPG and SOVY; healthcare and medical with ENDOR and CERA; hybrid polymers and materials with ITAP, TopGaN and REPSOL. Further value will be added to the project by working on new materials that have been identified as key future targets but cannot be currently made, or made in significant quantities. The consortium is founded on the principle that the whole value chain (from nanoparticle production to final product) must be involved in the development of the technology. This will not only inform the development stages of the production process but also maximise ""market pull"", rather than simply relying on subsequent ""technology push""." (cs)
Title
  • Sustainable HydrothermaI Manufacturing of Nanomaterials (en)
  • Sustainable HydrothermaI Manufacturing of Nanomaterials (cs)
http://linked.open...vai/cislo-smlouvy
http://linked.open...lsi-vedlejsi-obor
http://linked.open...avai/druh-souteze
http://linked.open...domain/vavai/faze
http://linked.open...vavai/hlavni-obor
http://linked.open...vai/vedlejsi-obor
http://linked.open...vavai/id-aktivity
http://linked.open.../vavai/id-souteze
http://linked.open...n/vavai/kategorie
http://linked.open...vai/klicova-slova
  • zde zapsat 1 klíčové slovo, další přidat do dalších řádků; sustainable hydrothermal manufacturing of nanomaterials; hydrothermal synthesis; nanomaterials; nanoparticles; life cycle costing; life cycle assessment (en)
http://linked.open...avai/konec-reseni
http://linked.open...nujicich-prijemcu
http://linked.open...avai/poskytovatel
http://linked.open...avai/start-reseni
http://linked.open...ai/statni-podpora
http://linked.open...vavai/typProjektu
http://linked.open...ai/uznane-naklady
http://linked.open...ai/pocet-prijemcu
http://linked.open...cet-spoluprijemcu
http://linked.open...ai/pocet-vysledku
http://linked.open...ku-zverejnovanych
is http://linked.open...ain/vavai/projekt of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 47 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software