About: Ubiquitin-Proteasomal Pathway     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Class, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:label
  • Ubiquitin-Proteasomal Pathway
rdfs:subClassOf
Semantic_Type
  • Functional Concept
Preferred_Name
  • Ubiquitin-Proteasomal Pathway
UMLS_CUI
  • C1519748
BioCarta_ID
  • h_parkinPathway
ALT_DEFINITION
  • The motor defects of Parkinson's disease are related to the loss of dopaminergic neurons in specific brain regions. Examination of these neurons in diseased tissue has revealed the presence of Lewy bodies, dense aggregates that include the protein alpha-synuclein. A genetic basis for most cases of Parkinson's disease has not yet been identified, but mutations in alpha-synuclein have been associated with at least one rare form of the disease, and mutations in another protein, the parkin gene, are associated with another inherited form of Parkinson's disease. Parkin is found in Lewy bodies along with alpha-synuclein and the parkin protein is an E3 ubiquitin ligase. Parkin appears to work in conjunction with ubiquitin activating (Uba)1, an E1 protein and the ubiquitin-conjugating (Ubc) enzymes UbcH7 and 8. The E1 delivers ubiquitin to the E2 in a cycle that creates an increasing chain of ubiquitin. The Parkin E3 ligates this onto substrates and so tags these proteins in normal cells, targeting them for destruction in the proteasome. One of the proteins that parkin normally targets for destruction is a specific O-glycosylated form of alpha-synuclein. Failure of parkin-mediated degradation of alpha-synuclein may be a key factor leading to the death of dopaminergic neurons. Another substrate of parkin is a GPCR-like protein called Pael-R that accumulates in the ER of affected cells and may cause neuronal cell death. The involvement of Parkin and alpha-synuclein mutations in genetic forms of Parkinson's suggests that failure of ubiquitination and protein degradation may be causative in other forms of Parkinson's. Questions remaining include the cause of the lack of effective ubiquitination in individuals lacking obvious genetic defects in this pathway and how to use this knowledge of ubiquitination and protein degradation in Parkinson's disease to identify therapeutic strategies.BIOCARTA
Legacy_Concept_Name
  • Ubiquitin-Proteasomal_Pathway
FULL_SYN
  • Role of Parkin in the Ubiquitin-Proteasomal PathwayPTBIOCARTA
  • Ubiquitin-Proteasomal PathwayPTNCI
code
  • C39182
is someValuesFrom of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 109 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software