About: Minimum Information Loss Cluster Analysis for Categorical Data     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • The EM algorithm has been used repeatedly to identify latent classes in categorical data by estimating finite distribution mixtures of product components. Unfortunately, the underlying mixtures are not uniquely identifiable and moreover, the estimated mixture parameters are starting-point dependent. For this reason we assume the latent class model only to define a set of elementary properties and the related statistical decision problem. In order to avoid the problem of unique identification of latent classes we propose a hierarchical ``bottom up'' cluster analysis based on unifying the latent classes sequentially. The clustering procedure is controlled by minimum information loss criterion.
  • The EM algorithm has been used repeatedly to identify latent classes in categorical data by estimating finite distribution mixtures of product components. Unfortunately, the underlying mixtures are not uniquely identifiable and moreover, the estimated mixture parameters are starting-point dependent. For this reason we assume the latent class model only to define a set of elementary properties and the related statistical decision problem. In order to avoid the problem of unique identification of latent classes we propose a hierarchical ``bottom up'' cluster analysis based on unifying the latent classes sequentially. The clustering procedure is controlled by minimum information loss criterion. (en)
Title
  • Minimum Information Loss Cluster Analysis for Categorical Data
  • Minimum Information Loss Cluster Analysis for Categorical Data (en)
skos:prefLabel
  • Minimum Information Loss Cluster Analysis for Categorical Data
  • Minimum Information Loss Cluster Analysis for Categorical Data (en)
skos:notation
  • RIV/68407700:21340/06:00125818!RIV11-MSM-21340___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • V
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 485911
http://linked.open...ai/riv/idVysledku
  • RIV/68407700:21340/06:00125818
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • cluster analysis; categorical data; EM algorithm (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [95DC161ED977]
http://linked.open...v/mistoKonaniAkce
  • Praha
http://linked.open...i/riv/mistoVydani
  • Praha
http://linked.open...i/riv/nazevZdroje
  • Doktorandské dny 2006
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Hora, Jan
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
number of pages
http://purl.org/ne...btex#hasPublisher
  • Česká technika - nakladatelství ČVUT
https://schema.org/isbn
  • 80-01-03554-9
http://localhost/t...ganizacniJednotka
  • 21340
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software