About: Automatic Segmentation of the Speech Signal by Artificial Neural Networks.     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • This contribution is focused on a part of data pre-processin - an automatic segmentation (labeling) of utterances into phonemes. Correct and accurate segmentation is the most important part of speech signal pre-processing for analysis, recognition and speech synthesis. This part is very time-consuming because the current speech corpuses are large. Therefore an automation of this process is very necessary. The artificial neural network (ANN) application is our contribution to solving this problem. We have focused on two types of neural nets - multilayer neural networks (MLNN) with BPG algorithm and Kohonen's self-organizing maps. The basic idea of our first experiment with MLNN was a creation of 36 ANN. Each of these nets was trained for one phoneme of the Czech language to classify it. The output from ANN was determined by a similarity rate of input data to trained data. Next experiments were focused on Kohonen's maps.
  • This contribution is focused on a part of data pre-processin - an automatic segmentation (labeling) of utterances into phonemes. Correct and accurate segmentation is the most important part of speech signal pre-processing for analysis, recognition and speech synthesis. This part is very time-consuming because the current speech corpuses are large. Therefore an automation of this process is very necessary. The artificial neural network (ANN) application is our contribution to solving this problem. We have focused on two types of neural nets - multilayer neural networks (MLNN) with BPG algorithm and Kohonen's self-organizing maps. The basic idea of our first experiment with MLNN was a creation of 36 ANN. Each of these nets was trained for one phoneme of the Czech language to classify it. The output from ANN was determined by a similarity rate of input data to trained data. Next experiments were focused on Kohonen's maps. (en)
  • Příspěvek je zaměřen na část automatické segmentace promluv na fonémy. Je to součást předzpracování dat. Korektní a přesná segmentace je nejdůležitější část předzpracování řeči pro účely analýzy, rozpoznání a syntézy.Je časově velmi náročná, zejména u rozsáhlých databází. Proto je nutné proces zautomatizovat. UNS aplikace je naším příspěvkem do této oblasti. Soustředili jsme se na dva druhy UNS, vícevrstvou neuronovou síť s BPG algoritmem a na Kohonenovu samoorganizující se mapu. První experimenty s MLNN byly založeny na vytvoření 36 UNS, z nichž každá byla trénována na jeden český foném. Výstup byl určen pomocí koeficientu podobnosti vstupních dat s natrénovanou sítí. Další experimenty budou soustředěny na užití Kohonenových map. (cs)
Title
  • Automatic Segmentation of the Speech Signal by Artificial Neural Networks.
  • Automatická segmentace řečového signálu pomocí umělých neuronových sítí. (cs)
  • Automatic Segmentation of the Speech Signal by Artificial Neural Networks. (en)
skos:prefLabel
  • Automatic Segmentation of the Speech Signal by Artificial Neural Networks.
  • Automatická segmentace řečového signálu pomocí umělých neuronových sítí. (cs)
  • Automatic Segmentation of the Speech Signal by Artificial Neural Networks. (en)
skos:notation
  • RIV/68407700:21230/07:03135528!RIV08-MZ0-21230___
http://linked.open.../vavai/riv/strany
  • 103;108
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(NR8287), Z(MSM6840770012)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 411129
http://linked.open...ai/riv/idVysledku
  • RIV/68407700:21230/07:03135528
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Neural Networks, Speech, Segmentation (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [136393CCD3F7]
http://linked.open...v/mistoKonaniAkce
  • Liberec
http://linked.open...i/riv/mistoVydani
  • Liberec
http://linked.open...i/riv/nazevZdroje
  • ECMS 2007 8-th Int. WSP on Electronics, Control, Modelling, Measurement and Signals
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Tučková, Jana
  • Žůrek, Michal
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
http://linked.open...n/vavai/riv/zamer
number of pages
http://purl.org/ne...btex#hasPublisher
  • Technická univerzita v Liberci
https://schema.org/isbn
  • 978-80-7372-218-0
http://localhost/t...ganizacniJednotka
  • 21230
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 91 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software