About: Cache Misses Analysis by Means of Data Mining Methods     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Tento příspěvek popisuje možnosti analýzy počtu výpadků ve skryté paměti pomocí těžby z dat. (cs)
  • It is really difficult to predict the cache behavior even for a simple program because every modern CPU use a complex memory hierarchy, which consists of levels of cache memories. One challenging task is to predict the exact number of cache misses during the sparse matrix-vector multiplication. Due to matrix sparsity, the memory access patterns are irregular and the utilization of a cache suffers from low spatial and temporal locality. It is really difficult to predict the cache behavior for all cases of input parameters. The cache misses data were also analyzed by means of data mining methods. This is the main topic of this paper and we will discuss the data mining analysis bellow in the more detailed form.
  • It is really difficult to predict the cache behavior even for a simple program because every modern CPU use a complex memory hierarchy, which consists of levels of cache memories. One challenging task is to predict the exact number of cache misses during the sparse matrix-vector multiplication. Due to matrix sparsity, the memory access patterns are irregular and the utilization of a cache suffers from low spatial and temporal locality. It is really difficult to predict the cache behavior for all cases of input parameters. The cache misses data were also analyzed by means of data mining methods. This is the main topic of this paper and we will discuss the data mining analysis bellow in the more detailed form. (en)
Title
  • Analýza počtu výpadků ve skryté paměti pomocí těžby z dat (cs)
  • Cache Misses Analysis by Means of Data Mining Methods
  • Cache Misses Analysis by Means of Data Mining Methods (en)
skos:prefLabel
  • Analýza počtu výpadků ve skryté paměti pomocí těžby z dat (cs)
  • Cache Misses Analysis by Means of Data Mining Methods
  • Cache Misses Analysis by Means of Data Mining Methods (en)
skos:notation
  • RIV/68407700:21110/06:03116279!RIV07-AV0-21110___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(IBS3086102)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 467602
http://linked.open...ai/riv/idVysledku
  • RIV/68407700:21110/06:03116279
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • bayes classifiers; cache model; data mining; decision trees; neural networks (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...i/riv/kodPristupu
http://linked.open...ontrolniKodProRIV
  • [64B18BA97F31]
http://linked.open...i/riv/mistoVydani
  • Praha
http://linked.open...n/vavai/riv/nosic
  • neuvedeno
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Šimeček, Ivan
  • Kordík, Pavel
https://schema.org/isbn
  • 80-01-03439-9
http://localhost/t...ganizacniJednotka
  • 21110
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software