About: Parallel low-memory quasi-Newton optimization algorithm for molecular structure     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • We present a novel parallel gradient optimization algorithm designed for the optimization of molecular geometry - the parallel preconditioned LBFGS (PP-LBFGS) method. In each step, several additional gradient calculations (performed in parallel with the calculation of the potential) are used to improve the most important elements of the Hessian. The sparsity of the connectivity matrix and the graph theory are used to estimate multiple Hessian elements from each additional gradient calculation. The simplest variant of the algorithm, which requires 4 gradient evaluations per cycle, converges 2x-4x faster than the LBFGS algorithm, depending on the size of the system.
  • We present a novel parallel gradient optimization algorithm designed for the optimization of molecular geometry - the parallel preconditioned LBFGS (PP-LBFGS) method. In each step, several additional gradient calculations (performed in parallel with the calculation of the potential) are used to improve the most important elements of the Hessian. The sparsity of the connectivity matrix and the graph theory are used to estimate multiple Hessian elements from each additional gradient calculation. The simplest variant of the algorithm, which requires 4 gradient evaluations per cycle, converges 2x-4x faster than the LBFGS algorithm, depending on the size of the system. (en)
Title
  • Parallel low-memory quasi-Newton optimization algorithm for molecular structure
  • Parallel low-memory quasi-Newton optimization algorithm for molecular structure (en)
skos:prefLabel
  • Parallel low-memory quasi-Newton optimization algorithm for molecular structure
  • Parallel low-memory quasi-Newton optimization algorithm for molecular structure (en)
skos:notation
  • RIV/61388963:_____/13:00398455!RIV14-GA0-61388963
http://linked.open...avai/predkladatel
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • I, P(GP13-01214P)
http://linked.open...iv/cisloPeriodika
  • Oct 1
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 95298
http://linked.open...ai/riv/idVysledku
  • RIV/61388963:_____/13:00398455
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • geometry optimization; parallelization; molecular graph (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • NL - Nizozemsko
http://linked.open...ontrolniKodProRIV
  • [40C3395EC360]
http://linked.open...i/riv/nazevZdroje
  • Chemical Physics Letters
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 584
http://linked.open...iv/tvurceVysledku
  • Řezáč, Jan
  • Klemsa, Jakub
http://linked.open...ain/vavai/riv/wos
  • 000324860000002
issn
  • 0009-2614
number of pages
http://bibframe.org/vocab/doi
  • 10.1016/j.cplett.2013.08.050
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 58 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software