About: Natural vector fields and 2-vector fields on the tangent bundle of a pseudo-Riemannian manifold     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Let $M$ be a differentiable manifold with a pseudo-Riemannian metric $g$ and a linear symmetric connection $K$. We classify all natural 0-order vector fields and 2-vector fields on $TM$ generated by $g$ and $K$. We get that all natural vector fields are linear combinations of the vertical lift of $u\in T_xM$ and the horizontal lift of $u$ with respect to $K$. Similarlz all natural 2-vector fields are linear combinatins of two canonical 2-vector fields induced by $g$ and $K$. Conditions for natural vector fields and natural 2-vector fields to define a Jacobi or a Poisson structure on $TM$ are disscused.
  • Let $M$ be a differentiable manifold with a pseudo-Riemannian metric $g$ and a linear symmetric connection $K$. We classify all natural 0-order vector fields and 2-vector fields on $TM$ generated by $g$ and $K$. We get that all natural vector fields are linear combinations of the vertical lift of $u\in T_xM$ and the horizontal lift of $u$ with respect to $K$. Similarlz all natural 2-vector fields are linear combinatins of two canonical 2-vector fields induced by $g$ and $K$. Conditions for natural vector fields and natural 2-vector fields to define a Jacobi or a Poisson structure on $TM$ are disscused. (en)
Title
  • Natural vector fields and 2-vector fields on the tangent bundle of a pseudo-Riemannian manifold
  • Natural vector fields and 2-vector fields on the tangent bundle of a pseudo-Riemannian manifold (en)
skos:prefLabel
  • Natural vector fields and 2-vector fields on the tangent bundle of a pseudo-Riemannian manifold
  • Natural vector fields and 2-vector fields on the tangent bundle of a pseudo-Riemannian manifold (en)
skos:notation
  • RIV/00216224:14310/01:00004221!RIV/2002/MSM/143102/N
http://linked.open.../vavai/riv/strany
  • 143
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(GA201/99/0296), Z(MSM 143100009)
http://linked.open...iv/cisloPeriodika
  • 2
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 688278
http://linked.open...ai/riv/idVysledku
  • RIV/00216224:14310/01:00004221
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Poisson structure, pseudo-Riemannian manifold, natural operator (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • CZ - Česká republika
http://linked.open...ontrolniKodProRIV
  • [D97A4A16E94A]
http://linked.open...i/riv/nazevZdroje
  • Archivum Mathematicum
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...ocetUcastnikuAkce
http://linked.open...nichUcastnikuAkce
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 37
http://linked.open...iv/tvurceVysledku
  • Janyška, Josef
http://linked.open...n/vavai/riv/zamer
issn
  • 0044-8753
number of pages
http://localhost/t...ganizacniJednotka
  • 14310
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software