About: Road classification from VHR imagery     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • The paper focuses on development of classification rules for road extraction from very high resolution satellite images. From the methodological point of view, a main emphasis is on object based image analyses and finding suitable features for discriminating consolidated (asphalt) roads from other land cover classes. Results of practical tests on QuickBird images from the surroundings of Prague (combination of agriculture, urban and forest areas) are presented. Supervised, per-pixel approach was also applied. A comparison of automatically derived land cover classes with manual interpretation of imagery showed similar level of accuracy of pixel and object based classification results. Nevertheless, a visual inspection proved better consistency of OBIA derived road segments that should be an input for creating a vector road network GIS layer.
  • The paper focuses on development of classification rules for road extraction from very high resolution satellite images. From the methodological point of view, a main emphasis is on object based image analyses and finding suitable features for discriminating consolidated (asphalt) roads from other land cover classes. Results of practical tests on QuickBird images from the surroundings of Prague (combination of agriculture, urban and forest areas) are presented. Supervised, per-pixel approach was also applied. A comparison of automatically derived land cover classes with manual interpretation of imagery showed similar level of accuracy of pixel and object based classification results. Nevertheless, a visual inspection proved better consistency of OBIA derived road segments that should be an input for creating a vector road network GIS layer. (en)
Title
  • Road classification from VHR imagery
  • Road classification from VHR imagery (en)
skos:prefLabel
  • Road classification from VHR imagery
  • Road classification from VHR imagery (en)
skos:notation
  • RIV/00216208:11310/10:10082650!RIV11-MZP-11310___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(SP/4I5/212/07)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 285531
http://linked.open...ai/riv/idVysledku
  • RIV/00216208:11310/10:10082650
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • QuickBird; road extraction; OBIA (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [66D6215C61B9]
http://linked.open...v/mistoKonaniAkce
  • Paris
http://linked.open...i/riv/mistoVydani
  • Neuveden
http://linked.open...i/riv/nazevZdroje
  • Proceedings of EARSeL Symposium 2010
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Kupková, Lucie
  • Potůčková, Markéta
  • Kolankiewiczová, Soňa
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
number of pages
http://purl.org/ne...btex#hasPublisher
  • EARSeL
https://schema.org/isbn
  • 978-3-00-033435-1
http://localhost/t...ganizacniJednotka
  • 11310
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 91 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software