About: Learning of robots via symbolic regression and evolutionary computation     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Článek se zabývá novou metodou pro symbolickou regresi - Analytickým programováním (AP), který dokáže řešit různé problémy z oblasti symbolické regrese. Jedním z úkolů může být nastavení optimální trajektorie pro umělého mravence na stezce Santa FE. Kromě principů AP je zde osvětlené, jak AP bylo použito na nastavení trajektorie pro umělého mravence. Byly zde použity 3 evoluční algoritmy jako optimalizační nástroje - SOMA, DE a simulované žíhání (SA). Výsledky ukázaly, že je nutné zvolit vhodný optimalizační nástroj, protože simulované žíhání neobstálo tak dobře jako SOMA a DE. (cs)
  • The paper deals with a novelty tool for symbolic regression - Analytic Programming (AP) which is able to solve various problems from the symbolic regression domain. One of tasks for it can be setting an optimal trajectory for artificial ant on Santa Fe trail which is the main application of Analytic Pro-gramming in this paper. In this contribution main principles of AP are de-scribed and explained. In second part of the article how AP was used for setting an optimal trajectory for artificial ant according the user requirements is in de-tail described. An ability to create so called programms, as well as Genetic Pro-gramming (GP) or Grammatical Evolution (GE) do, is shown in that part. AP is a superstructure of evolutionary algorithms which are necessary to run AP. In this contribution 3 evolutionary algorithms were used - Self Organizing Mi-grating Algorithm, Differential Evolution and Simulated Annealing. The results show that the first two used algorithms were more successful than not so robust Simu
  • The paper deals with a novelty tool for symbolic regression - Analytic Programming (AP) which is able to solve various problems from the symbolic regression domain. One of tasks for it can be setting an optimal trajectory for artificial ant on Santa Fe trail which is the main application of Analytic Pro-gramming in this paper. In this contribution main principles of AP are de-scribed and explained. In second part of the article how AP was used for setting an optimal trajectory for artificial ant according the user requirements is in de-tail described. An ability to create so called programms, as well as Genetic Pro-gramming (GP) or Grammatical Evolution (GE) do, is shown in that part. AP is a superstructure of evolutionary algorithms which are necessary to run AP. In this contribution 3 evolutionary algorithms were used - Self Organizing Mi-grating Algorithm, Differential Evolution and Simulated Annealing. The results show that the first two used algorithms were more successful than not so robust Simu (en)
Title
  • Learning of robots via symbolic regression and evolutionary computation
  • Learning of robots via symbolic regression and evolutionary computation (en)
  • Učení robota pomocí symbolické regrese a evolučních výpočtů (cs)
skos:prefLabel
  • Learning of robots via symbolic regression and evolutionary computation
  • Learning of robots via symbolic regression and evolutionary computation (en)
  • Učení robota pomocí symbolické regrese a evolučních výpočtů (cs)
skos:notation
  • RIV/70883521:28140/07:63505771!RIV08-MSM-28140___
http://linked.open.../vavai/riv/strany
  • 27-34
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(GA102/05/0271), P(GA102/06/1132), Z(MSM7088352101)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 430690
http://linked.open...ai/riv/idVysledku
  • RIV/70883521:28140/07:63505771
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Evolutionary algorithms; symbolic regression; Santa Fe (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [5E947DB06638]
http://linked.open...i/riv/mistoVydani
  • Ostrava
http://linked.open...i/riv/nazevZdroje
  • WETDAP 2007 - Znalosti 2007
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Oplatková, Zuzana
  • Zelinka, Ivan
http://linked.open...n/vavai/riv/zamer
number of pages
http://purl.org/ne...btex#hasPublisher
  • Vysoká škola báňská - Technická univerzita Ostrava
https://schema.org/isbn
  • 978-80-248-1332-5
http://localhost/t...ganizacniJednotka
  • 28140
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 85 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software