About: Hierarchical particle swarm optimization for the design of beta basis function neural network     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • A novel learning algorithm is proposed for non linear modeling and identification by the use of the beta basis function neural network (BBFNN). The proposed method is a hierarchical particle swarm optimization (HPSO). The objective of this paper is to optimize the parameters of the beta basis function neural network (BBFNN) with high accuracy. The population of HPSO forms multiple beta neural networks with different structures at an upper hierarchical level and each particle of the previous population is optimized at a lower hierarchical level to improve the performance of each particle swarm. For the beta neural network consisting n particles are formed in the upper level to optimize the structure of the beta neural network. In the lower level, the population within the same length particle is to optimize the free parameters of the beta neural network. Experimental results on a number of benchmarks problems drawn from regression and time series prediction area demonstrate that the HPSO produces a better generalization performance. 2013 Springer-Verlag.
  • A novel learning algorithm is proposed for non linear modeling and identification by the use of the beta basis function neural network (BBFNN). The proposed method is a hierarchical particle swarm optimization (HPSO). The objective of this paper is to optimize the parameters of the beta basis function neural network (BBFNN) with high accuracy. The population of HPSO forms multiple beta neural networks with different structures at an upper hierarchical level and each particle of the previous population is optimized at a lower hierarchical level to improve the performance of each particle swarm. For the beta neural network consisting n particles are formed in the upper level to optimize the structure of the beta neural network. In the lower level, the population within the same length particle is to optimize the free parameters of the beta neural network. Experimental results on a number of benchmarks problems drawn from regression and time series prediction area demonstrate that the HPSO produces a better generalization performance. 2013 Springer-Verlag. (en)
Title
  • Hierarchical particle swarm optimization for the design of beta basis function neural network
  • Hierarchical particle swarm optimization for the design of beta basis function neural network (en)
skos:prefLabel
  • Hierarchical particle swarm optimization for the design of beta basis function neural network
  • Hierarchical particle swarm optimization for the design of beta basis function neural network (en)
skos:notation
  • RIV/61989100:27240/13:86092932!RIV15-MSM-27240___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • S
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
  • Abraham Padath, Ajith
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 77314
http://linked.open...ai/riv/idVysledku
  • RIV/61989100:27240/13:86092932
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Time series prediction; Particle swarm; Nonlinear modeling; Hierarchical particle swarm optimization; Hierarchical level; Generalization performance; Free parameters; Different structure; Basis functions (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [0F843145FF90]
http://linked.open...v/mistoKonaniAkce
  • Chennai
http://linked.open...i/riv/mistoVydani
  • Heidelberg
http://linked.open...i/riv/nazevZdroje
  • Advances in Intelligent Systems and Computing. Volume 182
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Abraham Padath, Ajith
  • Alimi, A. M.
  • Dhahri, H.
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
issn
  • 2194-5357
number of pages
http://bibframe.org/vocab/doi
  • 10.1007/978-3-642-32063-7_22
http://purl.org/ne...btex#hasPublisher
  • Springer-Verlag
https://schema.org/isbn
  • 978-3-642-32062-0
http://localhost/t...ganizacniJednotka
  • 27240
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software