About: Solving the Euclidean Steiner Tree Problem Using Geometric Structures     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • The Euclidean Steiner Tree Problem is to find a shortest network spanning a set of fixed points in the plane, allowing the addition of auxiliary points to the set. The problem being NP-hard, polynomial-time approximations or heuristics are required. There are many rather complex heuristics based, e.g., on enumerating full topologies and consuming long time for computations for large instances. In this paper, we applied to use tools of computational geometry, especially the properties of Delaunay triangulation, a well-known geometric structure, and combine them with insertion heuristics based on the construction of the Euclidean minimum spanning tree. Thus an algorithm could be proposed that is very efficient and fast. Experiments confirmed that computations by this algorithm generate very good results in a reasonable amount of time, even for large instances of the studied problem.
  • The Euclidean Steiner Tree Problem is to find a shortest network spanning a set of fixed points in the plane, allowing the addition of auxiliary points to the set. The problem being NP-hard, polynomial-time approximations or heuristics are required. There are many rather complex heuristics based, e.g., on enumerating full topologies and consuming long time for computations for large instances. In this paper, we applied to use tools of computational geometry, especially the properties of Delaunay triangulation, a well-known geometric structure, and combine them with insertion heuristics based on the construction of the Euclidean minimum spanning tree. Thus an algorithm could be proposed that is very efficient and fast. Experiments confirmed that computations by this algorithm generate very good results in a reasonable amount of time, even for large instances of the studied problem. (en)
Title
  • Solving the Euclidean Steiner Tree Problem Using Geometric Structures
  • Solving the Euclidean Steiner Tree Problem Using Geometric Structures (en)
skos:prefLabel
  • Solving the Euclidean Steiner Tree Problem Using Geometric Structures
  • Solving the Euclidean Steiner Tree Problem Using Geometric Structures (en)
skos:notation
  • RIV/00216305:26210/08:PU76870!RIV10-MSM-26210___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • Z(MSM0021630529)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 395865
http://linked.open...ai/riv/idVysledku
  • RIV/00216305:26210/08:PU76870
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Steiner tree, Steiner ratio, heuristic, Delaunay triangulation (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [A3EF6DBDB1E3]
http://linked.open...v/mistoKonaniAkce
  • Brno University of Technology
http://linked.open...i/riv/mistoVydani
  • Brno
http://linked.open...i/riv/nazevZdroje
  • Proceedings of the 14th International Conference on Soft Computing MENDEL 2008
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Šeda, Miloš
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
http://linked.open...n/vavai/riv/zamer
number of pages
http://purl.org/ne...btex#hasPublisher
  • Vysoké učení technické v Brně. Fakulta strojního inženýrství
https://schema.org/isbn
  • 978-80-214-3675-6
http://localhost/t...ganizacniJednotka
  • 26210
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 100 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software