About: The Tutte Polynomial for Matroids of Bounded Branch-Width     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • It is a classical result of Jaeger, Vertigan and Welsh that evaluating the Tutte polynomial of a graph is $\#P$-hard in all but few special points. On the other hand, several papers in past years have shown that the Tutte polynomial of a graph can be efficiently computed for graphs of bounded tree-width. In this paper we present a recursive formula computing the Tutte polynomial of a matroid $\md M$ represented over a finite field (which includes all graphic matroids), using a so called parse tree of a branch-decomposition of $\md M$. This formula provides an algorithm computing the Tutte polynomial for a representable matroid of bounded branch-width in polynomial time with a fixed exponent.
  • It is a classical result of Jaeger, Vertigan and Welsh that evaluating the Tutte polynomial of a graph is $\#P$-hard in all but few special points. On the other hand, several papers in past years have shown that the Tutte polynomial of a graph can be efficiently computed for graphs of bounded tree-width. In this paper we present a recursive formula computing the Tutte polynomial of a matroid $\md M$ represented over a finite field (which includes all graphic matroids), using a so called parse tree of a branch-decomposition of $\md M$. This formula provides an algorithm computing the Tutte polynomial for a representable matroid of bounded branch-width in polynomial time with a fixed exponent. (en)
Title
  • The Tutte Polynomial for Matroids of Bounded Branch-Width
  • The Tutte Polynomial for Matroids of Bounded Branch-Width (en)
skos:prefLabel
  • The Tutte Polynomial for Matroids of Bounded Branch-Width
  • The Tutte Polynomial for Matroids of Bounded Branch-Width (en)
skos:notation
  • RIV/00216224:14330/06:00016574!RIV10-MSM-14330___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(1ET101940420), P(1M0545)
http://linked.open...iv/cisloPeriodika
  • 3
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 504558
http://linked.open...ai/riv/idVysledku
  • RIV/00216224:14330/06:00016574
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • representable matroid; Tutte polynomial; branch-width (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • GB - Spojené království Velké Británie a Severního Irska
http://linked.open...ontrolniKodProRIV
  • [A32DCDEF017B]
http://linked.open...i/riv/nazevZdroje
  • Combin. Prob. Computing
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 15
http://linked.open...iv/tvurceVysledku
  • Hliněný, Petr
issn
  • 0963-5483
number of pages
http://localhost/t...ganizacniJednotka
  • 14330
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software