About: On the curvature of tensor product connections and covariant differentials     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Je dáno souřadnicové vyjaádření a geometrický popis křivosti tensorového součinu konexí. Je definováno kovariantní derivování geometrických polí vzhledem k tensorovému součinu konexí. (cs)
  • We give coordinate formula and geometric description of the curvature of the tensor product connection of linear connections on vector bundles with the same base manifold. We define the covariant differential of geometric fields of certain types with respect to a pair of a linear connection on a vector bundle and a linear symmetric connection on the base manifold. We prove the generalized Bianchi identity for linear connections and we prove that the antisymmetrization of the second order covariant differential is expressed via the curvature tensors of both connections.
  • We give coordinate formula and geometric description of the curvature of the tensor product connection of linear connections on vector bundles with the same base manifold. We define the covariant differential of geometric fields of certain types with respect to a pair of a linear connection on a vector bundle and a linear symmetric connection on the base manifold. We prove the generalized Bianchi identity for linear connections and we prove that the antisymmetrization of the second order covariant differential is expressed via the curvature tensors of both connections. (en)
Title
  • On the curvature of tensor product connections and covariant differentials
  • On the curvature of tensor product connections and covariant differentials (en)
  • O křivosti tensorového součinu konexí (cs)
skos:prefLabel
  • On the curvature of tensor product connections and covariant differentials
  • On the curvature of tensor product connections and covariant differentials (en)
  • O křivosti tensorového součinu konexí (cs)
skos:notation
  • RIV/00216224:14310/04:00024526!RIV09-GA0-14310___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(GA201/02/0225)
http://linked.open...iv/cisloPeriodika
  • 1
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 577858
http://linked.open...ai/riv/idVysledku
  • RIV/00216224:14310/04:00024526
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • linear connection; curvature; covariant differential (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • IT - Italská republika
http://linked.open...ontrolniKodProRIV
  • [373079FB6F7A]
http://linked.open...i/riv/nazevZdroje
  • Supplemento di Rendiconti del Circolo Matematico di Palermo
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 72
http://linked.open...iv/tvurceVysledku
  • Janyška, Josef
issn
  • 0009-725X
number of pages
http://localhost/t...ganizacniJednotka
  • 14310
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software