About: Transcriptional Repression by DNA Methylation Pathway     Goto   Sponge   Distinct   Permalink

An Entity of Type : owl:Class, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:label
  • Transcriptional Repression by DNA Methylation Pathway
rdfs:subClassOf
Semantic_Type
  • Functional Concept
Preferred_Name
  • Transcriptional Repression by DNA Methylation Pathway
UMLS_CUI
  • C2984170
BioCarta_ID
  • h_mbdPathway
ALT_DEFINITION
  • Tumorigenesis is known to be a multistep process in which defects in various cancer genes accumulate. Epigenetic modifications, most importantly DNA methylation events, are frequently involved in transcriptional changes in both tumor suppressor genes and oncogenes. Methylation of cytosine at CpG dinucleotides is a common feature of higher eukaryotic genomes. DNA methylation in the promoter regions of genes is generally correlated with gene silencing. Two underlying mechanisms have been identified. First, binding of transcription factors or enhancer blocking elements, such as CTCF, may be inhibited by DNA methylation. The second and more general mechanism involves proteins that detect methylated DNA through methyl CpG-binding domains (MBDs). Four of these proteins-MBD1, MBD2, MBD3, and MeCP2-have been implicated in methylation-dependent repression of transcription. These proteins mediate recruitment of repressor complexes that include histone deacetylases (HDACs). HDACs remove acetyl groups from lysine residues of histones H3 and H4 that results in condensation of chromatin and thus limit access of transcription factors to promoter regions of genes localized nearby. Well-studied co-repressor complexes include Sin3A and Mi-2/NuRD. MeCP2, a polypeptide characterized by an MBD and a transcriptional repression domain that specifically binds methylated DNA, copurifies with the Sin3A/HDAC corepressor complex. MeCP1 complex is composed of 10 major polypeptides including MBD2 and all of the known NuRD complex components. The two protein complexes share four polypeptides: HDAC1, HDAC2, RbAp46, and RbAp48. In newition, each complex contains unique polypeptides (Sin3A, SAP30, and SAP18 in the Sin3 complex, and Mi2, MTA1, MTA2 and MBD3 in the NuRD complex). The NuRD complex possesses nucleosome remodeling activity because of the presence of Mi2, a member of the SWI2/SNF2 helicase/ATPase family. This complex preferentially binds, remodels, and deacetylates methylated nucleosomes. MTA1 or MTA2 (metastasis-associated protein 1 or 2) expression levels are elevated in metastatic cancer cells, MTA2 modulates the enzymatic activity of the histone deacetylase core complex.BIOCARTA
FULL_SYN
  • DNA Methylation PathwaySYNCI
  • Transcriptional Repression by DNA Methylation PathwayPTNCI
  • Mechanisms of Transcriptional Repression by DNA MethylationPTBIOCARTA
code
  • C91331
is someValuesFrom of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 46 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software