http://linked.open...generalReferences
| - # Schroeder K, Fahey T: Over-the-counter medications for acute cough in children and adults in ambulatory settings. Cochrane Database Syst Rev. 2004 Oct 18;(4):CD001831. "Pubmed":http://www.ncbi.nlm.nih.gov/pubmed/15495019 # Vree TB, van Dongen RT, Koopman-Kimenai PM: Codeine analgesia is due to codeine-6-glucuronide, not morphine. Int J Clin Pract. 2000 Jul-Aug;54(6):395-8. "Pubmed":http://www.ncbi.nlm.nih.gov/pubmed/11092114 # Srinivasan V, Wielbo D, Tebbett IR: Analgesic effects of codeine-6-glucuronide after intravenous administration. Eur J Pain. 1997;1(3):185-90. "Pubmed":http://www.ncbi.nlm.nih.gov/pubmed/15102399 (en)
|
http://linked.open...mechanismOfAction
| - Opiate receptors are coupled with G-protein receptors and function as both positive and negative regulators of synaptic transmission via G-proteins that activate effector proteins. Binding of the opiate stimulates the exchange of GTP for GDP on the G-protein complex. As the effector system is adenylate cyclase and cAMP located at the inner surface of the plasma membrane, opioids decrease intracellular cAMP by inhibiting adenylate cyclase. Subsequently, the release of nociceptive neurotransmitters such as substance P, GABA, dopamine, acetylcholine and noradrenaline is inhibited. Opioids also inhibit the release of vasopressin, somatostatin, insulin and glucagon. Codeine's analgesic activity is, most likely, due to its conversion to morphine. Opioids close N-type voltage-operated calcium channels (OP2-receptor agonist) and open calcium-dependent inwardly rectifying potassium channels (OP3 and OP1 receptor agonist). This results in hyperpolarization and reduced neuronal excitability. (en)
|