About: Discrete time quantum walks on percolation graphs     Goto   Sponge   Distinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • Randomly breaking connections in a graph alters its transport properties, a model used to describe percolation. In the case of quantum walks, dynamic percolation graphs represent a special type of imperfections, where the connections appear and disappear randomly in each step during the time evolution. The resulting open system dynamics is hard to treat numerically in general. We shortly review the literature on this problem. We then present our method to solve the evolution on finite percolation graphs in the long time limit, applying the asymptotic methods concerning random unitary maps. We work out the case of one-dimensional chains in detail and provide a concrete, step-by-step numerical example in order to give more insight into the possible asymptotic behavior. The results about the case of the two-dimensional integer lattice are summarized, focusing on the Grover-type coin operator.
  • Randomly breaking connections in a graph alters its transport properties, a model used to describe percolation. In the case of quantum walks, dynamic percolation graphs represent a special type of imperfections, where the connections appear and disappear randomly in each step during the time evolution. The resulting open system dynamics is hard to treat numerically in general. We shortly review the literature on this problem. We then present our method to solve the evolution on finite percolation graphs in the long time limit, applying the asymptotic methods concerning random unitary maps. We work out the case of one-dimensional chains in detail and provide a concrete, step-by-step numerical example in order to give more insight into the possible asymptotic behavior. The results about the case of the two-dimensional integer lattice are summarized, focusing on the Grover-type coin operator. (en)
Title
  • Discrete time quantum walks on percolation graphs
  • Discrete time quantum walks on percolation graphs (en)
skos:prefLabel
  • Discrete time quantum walks on percolation graphs
  • Discrete time quantum walks on percolation graphs (en)
skos:notation
  • RIV/68407700:21340/14:00221767!RIV15-GA0-21340___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(GA13-33906S)
http://linked.open...iv/cisloPeriodika
  • 5
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 11696
http://linked.open...ai/riv/idVysledku
  • RIV/68407700:21340/14:00221767
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • DECOHERENCE; DYNAMICS; PHOTONS (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • DE - Spolková republika Německo
http://linked.open...ontrolniKodProRIV
  • [368B64D65091]
http://linked.open...i/riv/nazevZdroje
  • EUROPEAN PHYSICAL JOURNAL PLUS
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 129
http://linked.open...iv/tvurceVysledku
  • Jex, Igor
  • Novotný, Jaroslav
  • Kiss, T.
  • Kollar, B.
http://linked.open...ain/vavai/riv/wos
  • 000336809800001
issn
  • 2190-5444
number of pages
http://bibframe.org/vocab/doi
  • 10.1140/epjp/i2014-14103-6
http://localhost/t...ganizacniJednotka
  • 21340
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 116 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software