About: On the Nonmonotony of Nonlinear Elliptic Operators in Divergence Form     Goto   Sponge   Distinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Uvažujeme obecný nelineární operátor druhého řádu v divergentním tvaru. Nejdříve se tento operátor definuje na Sobolevově prostoru funkcí jedné proměnné a jsou prezentovány nutné a postačující podmínky zaručující jeho monotonii a to jak v obecném, tak v konkrétním případě. Dále jsou tyto výsledky rozšířeny do více prostorových dimenzí. Důsledkem je důkaz nemonotonie stacionárního nelineárního operátoru vedení tepla v libovolné dimenzi. (cs)
  • A general nonlinear elliptic operator of second order in divergence form is considered. First, the operator is defined on a Sobolev space of functions of one variable, and necessary as well as sufficient conditions ensuring the monotony of the operator are given for both general and particular settings. Next, these results are extended into more spatial dimensions. As a consequence, the nonmonotony of a stationary nonlinear heat conduction operator is proven in an arbitrary spatial dimension.
  • A general nonlinear elliptic operator of second order in divergence form is considered. First, the operator is defined on a Sobolev space of functions of one variable, and necessary as well as sufficient conditions ensuring the monotony of the operator are given for both general and particular settings. Next, these results are extended into more spatial dimensions. As a consequence, the nonmonotony of a stationary nonlinear heat conduction operator is proven in an arbitrary spatial dimension. (en)
Title
  • On the Nonmonotony of Nonlinear Elliptic Operators in Divergence Form
  • O nemonotonii nelineárního eleiptického operátoru v divergentním tvaru (cs)
  • On the Nonmonotony of Nonlinear Elliptic Operators in Divergence Form (en)
skos:prefLabel
  • On the Nonmonotony of Nonlinear Elliptic Operators in Divergence Form
  • O nemonotonii nelineárního eleiptického operátoru v divergentním tvaru (cs)
  • On the Nonmonotony of Nonlinear Elliptic Operators in Divergence Form (en)
skos:notation
  • RIV/67985840:_____/04:00022967!RIV06-AV0-67985840
http://linked.open.../vavai/riv/strany
  • 25;33
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(IAA1019201), Z(AV0Z1019905)
http://linked.open...iv/cisloPeriodika
  • 1
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 577905
http://linked.open...ai/riv/idVysledku
  • RIV/67985840:_____/04:00022967
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • nonlinear elliptic operator; divergence form; monotony (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • JP - Japonsko
http://linked.open...ontrolniKodProRIV
  • [0C25BAE063D5]
http://linked.open...i/riv/nazevZdroje
  • Advances in Mathematical Sciences and Applications
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 14
http://linked.open...iv/tvurceVysledku
  • Vejchodský, Tomáš
http://linked.open...n/vavai/riv/zamer
issn
  • 1343-4373
number of pages
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software