About: On Robust Information Extraction from High-Dimensional Data     Goto   Sponge   Distinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Information extraction from high-dimensional data represents an important problem in current applications in management or econometrics. An important problem from a practical point of view is the sensitivity of machine learning methods with respect to the presence of outlying data values, while numerical stability represents another important aspect of data mining from high-dimensional data. This paper gives an overview of various types of data mining, discusses their suitability for high-dimensional data and critically discusses their properties from the robustness point of view, while we explain that the robustness itself is perceived differently in different contexts. Moreover, we investigate properties of a robust nonlinear regression estimator of Kalina (2013).
  • Information extraction from high-dimensional data represents an important problem in current applications in management or econometrics. An important problem from a practical point of view is the sensitivity of machine learning methods with respect to the presence of outlying data values, while numerical stability represents another important aspect of data mining from high-dimensional data. This paper gives an overview of various types of data mining, discusses their suitability for high-dimensional data and critically discusses their properties from the robustness point of view, while we explain that the robustness itself is perceived differently in different contexts. Moreover, we investigate properties of a robust nonlinear regression estimator of Kalina (2013). (en)
Title
  • On Robust Information Extraction from High-Dimensional Data
  • On Robust Information Extraction from High-Dimensional Data (en)
skos:prefLabel
  • On Robust Information Extraction from High-Dimensional Data
  • On Robust Information Extraction from High-Dimensional Data (en)
skos:notation
  • RIV/67985807:_____/14:00427963!RIV15-AV0-67985807
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • I
http://linked.open...iv/cisloPeriodika
  • 1
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 34365
http://linked.open...ai/riv/idVysledku
  • RIV/67985807:_____/14:00427963
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • data mining; high-dimensional data; robust econometrics; outliers; machine learning (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • RS - Srbská republika
http://linked.open...ontrolniKodProRIV
  • [D6F182902238]
http://linked.open...i/riv/nazevZdroje
  • Serbian Journal of Management
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 9
http://linked.open...iv/tvurceVysledku
  • Kalina, Jan
issn
  • 1452-4864
number of pages
http://bibframe.org/vocab/doi
  • 10.5937/sjm9-5520
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 77 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software