About: State-dependent photon blockade via quantum-reservoir engineering     Goto   Sponge   Distinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • An arbitrary initial state of an optical or microwave field in a lossy driven nonlinear cavity can be changed into a partially incoherent superposition of only the vacuum and the single-photon states. This effect is known as single-photon blockade, which is usually analyzed for a Kerr-type nonlinear cavity parametrically driven by a single-photon process assuming single-photon loss mechanisms. We study photon blockade engineering via a nonlinear reservoir, i.e., a quantum reservoir, where only two-photon absorption is allowed. Namely, we analyze a lossy nonlinear cavity parametrically driven by a two-photon process and allowing two-photon loss mechanisms, as described by the master equation derived for a two-photon absorbing reservoir. The nonlinear cavity engineering can be realized by a linear cavity with a tunable two-level system via the Jaynes-Cummings interaction in the dispersive limit. We show that by tuning properly the frequencies of the driving field and the two-level system, the steady state of the cavity field can be the single-photon Fock state or a partially incoherent superposition of several Fock states with photon numbers, e. g., (0,2), (1,3), (0,1,2), or (0,2,4). At the right (now fixed) frequencies, we observe that an arbitrary initial coherent or incoherent superposition of Fock states with an even (odd) number of photons is changed into a partially incoherent superposition of a few Fock states of the same photon-number parity. We find analytically approximate formulas for these two kinds of solutions for several differently tuned systems. A general solution for an arbitrary initial state is a weighted mixture of the above two solutions with even and odd photon numbers, where the weights are given by the probabilities of measuring the even and odd numbers of photons of the initial cavity field, respectively. This can be interpreted as two separate evolution-dissipation channels for even and odd-number states.
  • An arbitrary initial state of an optical or microwave field in a lossy driven nonlinear cavity can be changed into a partially incoherent superposition of only the vacuum and the single-photon states. This effect is known as single-photon blockade, which is usually analyzed for a Kerr-type nonlinear cavity parametrically driven by a single-photon process assuming single-photon loss mechanisms. We study photon blockade engineering via a nonlinear reservoir, i.e., a quantum reservoir, where only two-photon absorption is allowed. Namely, we analyze a lossy nonlinear cavity parametrically driven by a two-photon process and allowing two-photon loss mechanisms, as described by the master equation derived for a two-photon absorbing reservoir. The nonlinear cavity engineering can be realized by a linear cavity with a tunable two-level system via the Jaynes-Cummings interaction in the dispersive limit. We show that by tuning properly the frequencies of the driving field and the two-level system, the steady state of the cavity field can be the single-photon Fock state or a partially incoherent superposition of several Fock states with photon numbers, e. g., (0,2), (1,3), (0,1,2), or (0,2,4). At the right (now fixed) frequencies, we observe that an arbitrary initial coherent or incoherent superposition of Fock states with an even (odd) number of photons is changed into a partially incoherent superposition of a few Fock states of the same photon-number parity. We find analytically approximate formulas for these two kinds of solutions for several differently tuned systems. A general solution for an arbitrary initial state is a weighted mixture of the above two solutions with even and odd photon numbers, where the weights are given by the probabilities of measuring the even and odd numbers of photons of the initial cavity field, respectively. This can be interpreted as two separate evolution-dissipation channels for even and odd-number states. (en)
Title
  • State-dependent photon blockade via quantum-reservoir engineering
  • State-dependent photon blockade via quantum-reservoir engineering (en)
skos:prefLabel
  • State-dependent photon blockade via quantum-reservoir engineering
  • State-dependent photon blockade via quantum-reservoir engineering (en)
skos:notation
  • RIV/61989592:15310/14:33149863!RIV15-MSM-15310___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • S
http://linked.open...iv/cisloPeriodika
  • 3
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 47267
http://linked.open...ai/riv/idVysledku
  • RIV/61989592:15310/14:33149863
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Kerr medium; nonlinear cavity; nonclassical light; projection synthesis; superposition states; one-atom; optical cavity; 2-photon absorption; strongly interacting photons; dimensional Hilbert-space (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • US - Spojené státy americké
http://linked.open...ontrolniKodProRIV
  • [3953CCA527EB]
http://linked.open...i/riv/nazevZdroje
  • Physical Review A
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 90
http://linked.open...iv/tvurceVysledku
  • Miranowicz, Adam
  • Bajer, Jiří
  • Liu, Yu-Xi
  • Nori, Franco
  • Paprzycka, Malgorzata
  • Zagoskin, Alexandre M
http://linked.open...ain/vavai/riv/wos
  • 000342157700004
issn
  • 1050-2947
number of pages
http://bibframe.org/vocab/doi
  • 10.1103/PhysRevA.90.033831
http://localhost/t...ganizacniJednotka
  • 15310
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 117 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software