About: Dissociation of Water at Iron Surfaces: Generalized Gradient Functional and Range-Separated Hybrid Functional Study     Goto   Sponge   Distinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Interaction of water with iron surface is involved in many significant processes like corrosion and water treatment by zerovalent iron nanoparticles (nZVI). We used a density functional theory to study adsorption and chemical reaction of a single water molecule with two low-index surfaces of iron, Fe(100) and Fe(111). We used generalized gradient form (PW91) of the density functional and also range-separated hybrid functional (HSE06), which incorporates a fraction of the Hartree-Fock exchange. A water molecule adsorbs on both surfaces with oxygen atom pointing on top a Fe atom and has higher affinity to the Fe(111) surface. The adsorbed water molecule can dissociate into H + OH (H-Fe-OH) species attached to the Fe surface with an activation barrier of 15.7 and 13.3 kcal/mol for the (100) and (111) surface, respectively. The hybrid functional yields similar energies for adsorption but predicts higher dissociation barriers compared to the generalized gradient functional. The HSE06 calculation reveals that H-Fe-OH is a deep minimum on the reaction profile of the studied process, in particular on the Fe(111) surface. This indicates that dissociated species can play an important role in reactivity of nZVI with pollutants in water treatment. The HSE06 functional also improves the overall agreement between theoretical calculations and previous experimental studies of the adsorption of water on iron surfaces.
  • Interaction of water with iron surface is involved in many significant processes like corrosion and water treatment by zerovalent iron nanoparticles (nZVI). We used a density functional theory to study adsorption and chemical reaction of a single water molecule with two low-index surfaces of iron, Fe(100) and Fe(111). We used generalized gradient form (PW91) of the density functional and also range-separated hybrid functional (HSE06), which incorporates a fraction of the Hartree-Fock exchange. A water molecule adsorbs on both surfaces with oxygen atom pointing on top a Fe atom and has higher affinity to the Fe(111) surface. The adsorbed water molecule can dissociate into H + OH (H-Fe-OH) species attached to the Fe surface with an activation barrier of 15.7 and 13.3 kcal/mol for the (100) and (111) surface, respectively. The hybrid functional yields similar energies for adsorption but predicts higher dissociation barriers compared to the generalized gradient functional. The HSE06 calculation reveals that H-Fe-OH is a deep minimum on the reaction profile of the studied process, in particular on the Fe(111) surface. This indicates that dissociated species can play an important role in reactivity of nZVI with pollutants in water treatment. The HSE06 functional also improves the overall agreement between theoretical calculations and previous experimental studies of the adsorption of water on iron surfaces. (en)
Title
  • Dissociation of Water at Iron Surfaces: Generalized Gradient Functional and Range-Separated Hybrid Functional Study
  • Dissociation of Water at Iron Surfaces: Generalized Gradient Functional and Range-Separated Hybrid Functional Study (en)
skos:prefLabel
  • Dissociation of Water at Iron Surfaces: Generalized Gradient Functional and Range-Separated Hybrid Functional Study
  • Dissociation of Water at Iron Surfaces: Generalized Gradient Functional and Range-Separated Hybrid Functional Study (en)
skos:notation
  • RIV/61989592:15310/12:33142863!RIV13-MSM-15310___
http://linked.open...avai/predkladatel
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(ED2.1.00/03.0058), P(EE2.3.20.0017), P(GBP208/12/G016), P(KAN115600801)
http://linked.open...iv/cisloPeriodika
  • 48
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 131557
http://linked.open...ai/riv/idVysledku
  • RIV/61989592:15310/12:33142863
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Fe(100); adsorption; augmented-wave method (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • US - Spojené státy americké
http://linked.open...ontrolniKodProRIV
  • [74809F99DF41]
http://linked.open...i/riv/nazevZdroje
  • Journal of Physical Chemistry Part C: Nanomaterials and Interfaces
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 116
http://linked.open...iv/tvurceVysledku
  • Otyepka, Michal
  • Lazar, Petr
http://linked.open...ain/vavai/riv/wos
  • 000311921900037
issn
  • 1932-7447
number of pages
http://bibframe.org/vocab/doi
  • 10.1021/jp3097814
http://localhost/t...ganizacniJednotka
  • 15310
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 117 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software