About: GPU Accelerated NEH Algorithm     Goto   Sponge   Distinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • This research aims to develop a CUDA accelerated NEH algorithm for the permutative flowshop scheduling problem with makespan criterion. NEH has been shown in the literature as the best constructive heuristic for this particular problem. The CUDA based NEH aims to speed up the processing time by utilising the GPU cores for parallel evaluation. In order to show the versatility and scalability of the CUDA based NEH, four new higher dimensional Taillard sets are generated. The experiments are conducted on the CPU and GPU and pairwise compared. Percentage relative difference and paired t-test both confirm that the GPU based NEH significantly improves on the execution time compared to the sequential CPU version for all the high dimensional problem instances.
  • This research aims to develop a CUDA accelerated NEH algorithm for the permutative flowshop scheduling problem with makespan criterion. NEH has been shown in the literature as the best constructive heuristic for this particular problem. The CUDA based NEH aims to speed up the processing time by utilising the GPU cores for parallel evaluation. In order to show the versatility and scalability of the CUDA based NEH, four new higher dimensional Taillard sets are generated. The experiments are conducted on the CPU and GPU and pairwise compared. Percentage relative difference and paired t-test both confirm that the GPU based NEH significantly improves on the execution time compared to the sequential CPU version for all the high dimensional problem instances. (en)
Title
  • GPU Accelerated NEH Algorithm
  • GPU Accelerated NEH Algorithm (en)
skos:prefLabel
  • GPU Accelerated NEH Algorithm
  • GPU Accelerated NEH Algorithm (en)
skos:notation
  • RIV/61989100:27240/14:86092779!RIV15-MSM-27240___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(GA13-08195S), S
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 18517
http://linked.open...ai/riv/idVysledku
  • RIV/61989100:27240/14:86092779
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • CUDA, NEH Algorithm, Flow shop scheduling (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [418F8533C46D]
http://linked.open...v/mistoKonaniAkce
  • Orlando
http://linked.open...i/riv/mistoVydani
  • New York
http://linked.open...i/riv/nazevZdroje
  • IEEE SSCI 2014 - 2014 IEEE Symposium Series on Computational Intelligence - CIPLS 2014: 2014 IEEE Symposium on Computational Intelligence in Production and Logistics Systems, Proceedings
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Davendra, Donald David
  • Metlická, Magdalena
  • Amann, Matthias
  • Hermann, Frank
  • Meier, Markus
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
number of pages
http://bibframe.org/vocab/doi
  • 10.1109/CIPLS.2014.7007169
http://purl.org/ne...btex#hasPublisher
  • Institute of Electrical and Electronics Engineers
https://schema.org/isbn
  • 978-1-4799-4501-6
http://localhost/t...ganizacniJednotka
  • 27240
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 85 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software