About: Built-in Smartphone Accelerometer Motion Pattern Recognition Using Wavelet Transform     Goto   Sponge   Distinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • This paper is concerned with motion pattern recognition using built-in accelerometers inside of modern mobile devices - smartphones. More and more people are using these devices nowadays without using its full potential for user motion recognition and evaluation. As accelerometer magnitude level comparison is not sufficient for motion pattern recognition morlet wavelet based recognition algorithm is introduced and tested as well as its device implementation is described and tested. Set of basic motion patterns walking, running and shaking with the device is tested and evaluated.
  • This paper is concerned with motion pattern recognition using built-in accelerometers inside of modern mobile devices - smartphones. More and more people are using these devices nowadays without using its full potential for user motion recognition and evaluation. As accelerometer magnitude level comparison is not sufficient for motion pattern recognition morlet wavelet based recognition algorithm is introduced and tested as well as its device implementation is described and tested. Set of basic motion patterns walking, running and shaking with the device is tested and evaluated. (en)
Title
  • Built-in Smartphone Accelerometer Motion Pattern Recognition Using Wavelet Transform
  • Built-in Smartphone Accelerometer Motion Pattern Recognition Using Wavelet Transform (en)
skos:prefLabel
  • Built-in Smartphone Accelerometer Motion Pattern Recognition Using Wavelet Transform
  • Built-in Smartphone Accelerometer Motion Pattern Recognition Using Wavelet Transform (en)
skos:notation
  • RIV/61989100:27240/13:86084200!RIV14-TA0-27240___
http://linked.open...avai/predkladatel
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(1M0567), P(TA01010632), S
http://linked.open...iv/cisloPeriodika
  • 2013
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 64018
http://linked.open...ai/riv/idVysledku
  • RIV/61989100:27240/13:86084200
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • wavelet, smartphone, accelerometer (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • DE - Spolková republika Německo
http://linked.open...ontrolniKodProRIV
  • [DE4C3D6F4DE0]
http://linked.open...i/riv/nazevZdroje
  • Advances in Intelligent Systems and Computing
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 189
http://linked.open...iv/tvurceVysledku
  • Jirka, Jakub
  • Prauzek, Michal
http://linked.open...ain/vavai/riv/wos
  • 000312969500046
issn
  • 2194-5357
number of pages
http://bibframe.org/vocab/doi
  • 10.1007/978-3-642-33018-6_46
http://localhost/t...ganizacniJednotka
  • 27240
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 22 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software