About: Automatic Classification of Sleep/Wake Stages Using Two-Step System     Goto   Sponge   Distinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • This paper presents application of an automatic classification system on 53 animal polysomnographic recordings. A two-step automatic system is used to score the recordings into three traditional stages: wake, NREM sleep and REM sleep. In the first step of the analysis, monitored signals are analyzed using artifact identification strategy and artifact-free signals are selected. Then, 30sec epochs are classified according to relevant features extracted from available signals using artificial neural networks. The overall classification accuracy reached by the presented classification system exceeded 95%, when analyzed 53 polysomnographic recordings.
  • This paper presents application of an automatic classification system on 53 animal polysomnographic recordings. A two-step automatic system is used to score the recordings into three traditional stages: wake, NREM sleep and REM sleep. In the first step of the analysis, monitored signals are analyzed using artifact identification strategy and artifact-free signals are selected. Then, 30sec epochs are classified according to relevant features extracted from available signals using artificial neural networks. The overall classification accuracy reached by the presented classification system exceeded 95%, when analyzed 53 polysomnographic recordings. (en)
Title
  • Automatic Classification of Sleep/Wake Stages Using Two-Step System
  • Automatic Classification of Sleep/Wake Stages Using Two-Step System (en)
skos:prefLabel
  • Automatic Classification of Sleep/Wake Stages Using Two-Step System
  • Automatic Classification of Sleep/Wake Stages Using Two-Step System (en)
skos:notation
  • RIV/61988987:17450/11:A12011Z9!RIV12-MSM-17450___
http://linked.open...avai/predkladatel
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • V
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 187558
http://linked.open...ai/riv/idVysledku
  • RIV/61988987:17450/11:A12011Z9
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • decision making; diagnosis; medical applications; pattern recognition; signal processing. (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [F1E494C40BC3]
http://linked.open...v/mistoKonaniAkce
  • Ostrava
http://linked.open...i/riv/nazevZdroje
  • Communications in Computer and Information Science
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Chapotot, Florian
  • Zoubek, Lukáš
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
number of pages
http://purl.org/ne...btex#hasPublisher
  • Springer-Verlag
https://schema.org/isbn
  • 978-3-642-22388-4
http://localhost/t...ganizacniJednotka
  • 17450
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software