About: Using Threshold Techniques for Object Detection in Infrared Images     Goto   Sponge   Distinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • The techniques for image format conversion from grayscale to binary could be grouped into two categories: global group and local group. In this paper, we focus on the binarization of a grayscale image using both thresholding techniques. Local binarization methods try to compute thresholds individually for each pixel, using information from the local neighborhood of the pixel. These methods are often slow since the computation of image features from the local neighborhood is to be done for each image pixel. This paper focuses on employing a fast approach to compute local thresholds using the technique of integral sum image. Using this approach we are able to achieve binarization speed close to the global binarization methods. What more, the Otsu method was used representing the other techniques in the global category. Global techniques are very fast and they give good results for typical images.
  • The techniques for image format conversion from grayscale to binary could be grouped into two categories: global group and local group. In this paper, we focus on the binarization of a grayscale image using both thresholding techniques. Local binarization methods try to compute thresholds individually for each pixel, using information from the local neighborhood of the pixel. These methods are often slow since the computation of image features from the local neighborhood is to be done for each image pixel. This paper focuses on employing a fast approach to compute local thresholds using the technique of integral sum image. Using this approach we are able to achieve binarization speed close to the global binarization methods. What more, the Otsu method was used representing the other techniques in the global category. Global techniques are very fast and they give good results for typical images. (en)
Title
  • Using Threshold Techniques for Object Detection in Infrared Images
  • Using Threshold Techniques for Object Detection in Infrared Images (en)
skos:prefLabel
  • Using Threshold Techniques for Object Detection in Infrared Images
  • Using Threshold Techniques for Object Detection in Infrared Images (en)
skos:notation
  • RIV/60162694:G43__/14:00523130!RIV15-MO0-G43_____
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • I, S
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 52500
http://linked.open...ai/riv/idVysledku
  • RIV/60162694:G43__/14:00523130
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Threshold techniques; Matlab; Object detection (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [2FA259D0D8C3]
http://linked.open...v/mistoKonaniAkce
  • Brno
http://linked.open...i/riv/mistoVydani
  • Brno
http://linked.open...i/riv/nazevZdroje
  • Proceedings of the 16th International Conference on Mechatronics – Mechatronika 2014
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Polášek, Martin
  • Pham, Quy Ich
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
number of pages
http://purl.org/ne...btex#hasPublisher
  • Vysoké učení technické v Brně
https://schema.org/isbn
  • 978-80-214-4817-9
http://localhost/t...ganizacniJednotka
  • G43
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software