About: Comparison of Offline Identification Methods on Bounded AutoRegressive Polynomial Models     Goto   Sponge   Distinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • In this paper we focused on methods for offline identification of bounded autoregressive polynomials models. Firstly we used classical least square (LS) method for identification. Secondly we used total least square (TLS) method and thirdly we used gradient based method Levenberg-Marquardt for identification. Bounded AR polynomial models are basically nonlinear in parameters but the models can be modified to linear dependencies on parameters if bounding function is irreversible. Levenberg-Marquardt method was applied to unmodified bounded AR polynomial models. Input/Output data was generated from the model of isothermal continuous stirred-tank reactor with and without additive noise. Finally all methods are compared on one-step and multi-step predictions.
  • In this paper we focused on methods for offline identification of bounded autoregressive polynomials models. Firstly we used classical least square (LS) method for identification. Secondly we used total least square (TLS) method and thirdly we used gradient based method Levenberg-Marquardt for identification. Bounded AR polynomial models are basically nonlinear in parameters but the models can be modified to linear dependencies on parameters if bounding function is irreversible. Levenberg-Marquardt method was applied to unmodified bounded AR polynomial models. Input/Output data was generated from the model of isothermal continuous stirred-tank reactor with and without additive noise. Finally all methods are compared on one-step and multi-step predictions. (en)
Title
  • Comparison of Offline Identification Methods on Bounded AutoRegressive Polynomial Models
  • Comparison of Offline Identification Methods on Bounded AutoRegressive Polynomial Models (en)
skos:prefLabel
  • Comparison of Offline Identification Methods on Bounded AutoRegressive Polynomial Models
  • Comparison of Offline Identification Methods on Bounded AutoRegressive Polynomial Models (en)
skos:notation
  • RIV/00216305:26220/14:PU108750!RIV15-MSM-26220___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • S
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 8145
http://linked.open...ai/riv/idVysledku
  • RIV/00216305:26220/14:PU108750
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • LS, TLS, nonlinear, polynomial, identification (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [7628B6425989]
http://linked.open...v/mistoKonaniAkce
  • Velké Karlovice
http://linked.open...i/riv/mistoVydani
  • Neuveden
http://linked.open...i/riv/nazevZdroje
  • 15th International Carpathian Control Conference - ICCC 2014
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Lebeda, Aleš
  • Pivoňka, Petr
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
number of pages
http://purl.org/ne...btex#hasPublisher
  • Neuveden
https://schema.org/isbn
  • 978-1-4799-3527-7
http://localhost/t...ganizacniJednotka
  • 26220
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 84 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software