About: Motion planning in challenging environments using rapidly-exploring random trees     Goto   Sponge   Distinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • This paper presents an efficient approach to trajectory planning for a holonomic mobile robot moving in static challenging environments including, for example, cluttered environments and spaces with narrow passages. It is an extension of the connect version of Rapidly-exploring random trees (RRT-connect) algorithm. The main idea presented here is to store randomly sampled configuration states which can not be reached because of collision, and then set them as roots to grow other random trees. It presumes growing of many trees in different hard to reach regions of environment to find bridges between them. Both simulation and experimental results demonsrate that it reduces the complexity of the original problem and thus resulting in fast space covering and increase the probability of finding the goal state
  • This paper presents an efficient approach to trajectory planning for a holonomic mobile robot moving in static challenging environments including, for example, cluttered environments and spaces with narrow passages. It is an extension of the connect version of Rapidly-exploring random trees (RRT-connect) algorithm. The main idea presented here is to store randomly sampled configuration states which can not be reached because of collision, and then set them as roots to grow other random trees. It presumes growing of many trees in different hard to reach regions of environment to find bridges between them. Both simulation and experimental results demonsrate that it reduces the complexity of the original problem and thus resulting in fast space covering and increase the probability of finding the goal state (en)
Title
  • Motion planning in challenging environments using rapidly-exploring random trees
  • Motion planning in challenging environments using rapidly-exploring random trees (en)
skos:prefLabel
  • Motion planning in challenging environments using rapidly-exploring random trees
  • Motion planning in challenging environments using rapidly-exploring random trees (en)
skos:notation
  • RIV/00216305:26210/13:PU110149!RIV15-MSM-26210___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • S
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
  • Gulina, Irina
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 89637
http://linked.open...ai/riv/idVysledku
  • RIV/00216305:26210/13:PU110149
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Rapidly-exploring random trees (RRTs) algorithm, multi-trees, motion planning, holonomic mobile robot (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [7813FBBC7BCF]
http://linked.open...v/mistoKonaniAkce
  • Brno University of Technology
http://linked.open...i/riv/mistoVydani
  • Neuveden
http://linked.open...i/riv/nazevZdroje
  • 19th International Conference on Soft Computing, MENDEL 2013
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Gulina, Irina
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
number of pages
http://purl.org/ne...btex#hasPublisher
  • Neuveden
https://schema.org/isbn
  • 978-80-214-4755-4
http://localhost/t...ganizacniJednotka
  • 26210
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 106 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software