Attributes | Values |
---|
rdf:type
| |
Description
| - Many NP-complete optimization problems may be approximately solved by stochastic or deterministic heuristic methods and it is necessary to find their efficient data representation to minimize iteration computational time. In this chapter, we will touch the Minimum Steiner Tree Problems in Graphs (or Network Steiner Tree Problem), which can be solved by heuristics based on the Minimum Spanning Tree Problem and/or the Shortest Path Problem using a binary heap that enables to implement a priority queue that substantially increases the algorithm efficiency. We will also show a Delaunay triangulation-based way of finding minimal networks connecting a set of given points in the Euclidean plane using straight lines (minimum spanning tree) and its more general case (Steiner minimum tree) where additional points can be considered. Finally, we will deal with visibility graphs, Voronoi diagrams and rapidly exploring trees and focus on their applications in robot motion planning, where the robot should pass aroun
- Many NP-complete optimization problems may be approximately solved by stochastic or deterministic heuristic methods and it is necessary to find their efficient data representation to minimize iteration computational time. In this chapter, we will touch the Minimum Steiner Tree Problems in Graphs (or Network Steiner Tree Problem), which can be solved by heuristics based on the Minimum Spanning Tree Problem and/or the Shortest Path Problem using a binary heap that enables to implement a priority queue that substantially increases the algorithm efficiency. We will also show a Delaunay triangulation-based way of finding minimal networks connecting a set of given points in the Euclidean plane using straight lines (minimum spanning tree) and its more general case (Steiner minimum tree) where additional points can be considered. Finally, we will deal with visibility graphs, Voronoi diagrams and rapidly exploring trees and focus on their applications in robot motion planning, where the robot should pass aroun (en)
|
Title
| - Graph and Geometric Algorithms and Efficient Data Structures
- Graph and Geometric Algorithms and Efficient Data Structures (en)
|
skos:prefLabel
| - Graph and Geometric Algorithms and Efficient Data Structures
- Graph and Geometric Algorithms and Efficient Data Structures (en)
|
skos:notation
| - RIV/00216305:26210/12:PU102952!RIV13-GA0-26210___
|
http://linked.open...avai/predkladatel
| |
http://linked.open...avai/riv/aktivita
| |
http://linked.open...avai/riv/aktivity
| |
http://linked.open...vai/riv/dodaniDat
| |
http://linked.open...aciTvurceVysledku
| |
http://linked.open.../riv/druhVysledku
| |
http://linked.open...iv/duvernostUdaju
| |
http://linked.open...titaPredkladatele
| |
http://linked.open...dnocenehoVysledku
| |
http://linked.open...ai/riv/idVysledku
| - RIV/00216305:26210/12:PU102952
|
http://linked.open...riv/jazykVysledku
| |
http://linked.open.../riv/klicovaSlova
| - Steiner tree, Voronoi diagram, Delaunay triangulation, visibility graph, rapidly exploring tree, binary heap (en)
|
http://linked.open.../riv/klicoveSlovo
| |
http://linked.open...ontrolniKodProRIV
| |
http://linked.open...i/riv/mistoVydani
| |
http://linked.open...vEdiceCisloSvazku
| |
http://linked.open...i/riv/nazevZdroje
| - Zelinka, I., Snášel, V., Abraham, A. (eds.): Handbook of Optimization. From Classical to Modern Approach.
|
http://linked.open...in/vavai/riv/obor
| |
http://linked.open...ichTvurcuVysledku
| |
http://linked.open...v/pocetStranKnihy
| |
http://linked.open...cetTvurcuVysledku
| |
http://linked.open...vavai/riv/projekt
| |
http://linked.open...UplatneniVysledku
| |
http://linked.open...iv/tvurceVysledku
| |
number of pages
| |
http://purl.org/ne...btex#hasPublisher
| |
https://schema.org/isbn
| |
http://localhost/t...ganizacniJednotka
| |
is http://linked.open...avai/riv/vysledek
of | |