About: Computing the Tutte Polynomial on Graphs of Bounded Clique-Width     Goto   Sponge   Distinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Tuttův polynom je známý obtížný grafový invariant, pro který jsou známy efektivní algoritmy jen v několika třídách grafů jako ty s omezenou stromovou šířkou. Pojem klikové šířky rozšiřuje kografy a je obecnější než stromová šířka. My ukážeme subexponeciální algoritmus (v čase expO(n2/3) ) počítající Tuttův polynom na kografech. Tento algoritmus je možno rozšířit na subexponenciální algoritmus pro všechny grafy omezené klikové šířky. Náš algoritmus dokonce počítá tzv. U-polynom. (cs)
  • The Tutte polynomial is a notoriously hard graph invariant, and efficient algorithms for it are known only for a few special graph classes, like for those of bounded tree-width. The notion of clique-width extends the definition of cograhs (graphs without induced P4), and it is a more general notion than that of tree-width. We show a subexponential algorithm (running in time expO(n2/3) ) for computing the Tutte polynomial on cographs. The algorithm can be extended to a subexponential algorithm computing the Tutte polynomial on on all graphs of bounded clique-width. In fact, our algorithm computes the more general U-polynomial.
  • The Tutte polynomial is a notoriously hard graph invariant, and efficient algorithms for it are known only for a few special graph classes, like for those of bounded tree-width. The notion of clique-width extends the definition of cograhs (graphs without induced P4), and it is a more general notion than that of tree-width. We show a subexponential algorithm (running in time expO(n2/3) ) for computing the Tutte polynomial on cographs. The algorithm can be extended to a subexponential algorithm computing the Tutte polynomial on on all graphs of bounded clique-width. In fact, our algorithm computes the more general U-polynomial. (en)
Title
  • Computing the Tutte Polynomial on Graphs of Bounded Clique-Width
  • Výpočet Tuttova polynomu na grafech omezené clique-width (cs)
  • Computing the Tutte Polynomial on Graphs of Bounded Clique-Width (en)
skos:prefLabel
  • Computing the Tutte Polynomial on Graphs of Bounded Clique-Width
  • Výpočet Tuttova polynomu na grafech omezené clique-width (cs)
  • Computing the Tutte Polynomial on Graphs of Bounded Clique-Width (en)
skos:notation
  • RIV/00216224:14330/05:00012661!RIV06-MSM-14330___
http://linked.open.../vavai/riv/strany
  • 59-68
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(1M0545), P(GA201/05/0050)
http://linked.open...iv/cisloPeriodika
  • 3787
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 516143
http://linked.open...ai/riv/idVysledku
  • RIV/00216224:14330/05:00012661
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Tutte polynomial; cographs; clique-width; subexponential algorithm; U polynomial (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • DE - Spolková republika Německo
http://linked.open...ontrolniKodProRIV
  • [B1666B0968E3]
http://linked.open...i/riv/nazevZdroje
  • Lecture Notes in Computer Science
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 3787
http://linked.open...iv/tvurceVysledku
  • Hliněný, Petr
  • Gimenez, Omer
  • Noy, Marc
issn
  • 0302-9743
number of pages
http://localhost/t...ganizacniJednotka
  • 14330
is http://linked.open...avai/riv/vysledek of
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 85 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software