About: A six-part collisional model of the main asteroid belt     Goto   Sponge   Distinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • In this work, we construct a new model for the collisional evolution of the main asteroid belt. Our goals are to test the scaling law of Benz and Asphaug (Benz, W., Asphaug, E. [1999]. Icarus, 142, 5-20) and ascertain if it can be used for the whole belt. We want to find initial size-frequency distributions (SEDs) for the considered six parts of the belt (inner, middle, %22pristine%22, outer, Cybele zone, high-inclination region) and to verify if the number of synthetic asteroid families created during the simulation matches the number of observed families as well. We used new observational data from the WISE satellite (Masiero et al., 2011) to construct the observed SFDs. We simulate mutual collisions of asteroids with a modified version of the Boulder code (Morbidelli, A., et al. [2009]. Icarus, 204, 558-573), where the results of hydrodynamic (SPH) simulations of Durda et al. (Durda, D.D., et al. 120071 Icarus, 498-516) and Benavidez et al. (Benavidez, P.G., et al. [2012]. 219, 57-76) are included. Because material characteristics can significantly affect breakups, we created two models - for monolithic asteroids and for rubble-piles. To explain the observed SFDs in the size range D = 1 to 10 km we have to also account for dynamical depletion due to the Yarkovsky effect. The assumption of (purely) rubble-pile asteroids leads to a significantly worse fit to the observed data, so that we can conclude that majority of main-belt asteroids are rather monolithic. Our work may also serve as a motivation for further SPH simulations of disruptions of smaller targets (with a parent body size of the order of 1 km).
  • In this work, we construct a new model for the collisional evolution of the main asteroid belt. Our goals are to test the scaling law of Benz and Asphaug (Benz, W., Asphaug, E. [1999]. Icarus, 142, 5-20) and ascertain if it can be used for the whole belt. We want to find initial size-frequency distributions (SEDs) for the considered six parts of the belt (inner, middle, %22pristine%22, outer, Cybele zone, high-inclination region) and to verify if the number of synthetic asteroid families created during the simulation matches the number of observed families as well. We used new observational data from the WISE satellite (Masiero et al., 2011) to construct the observed SFDs. We simulate mutual collisions of asteroids with a modified version of the Boulder code (Morbidelli, A., et al. [2009]. Icarus, 204, 558-573), where the results of hydrodynamic (SPH) simulations of Durda et al. (Durda, D.D., et al. 120071 Icarus, 498-516) and Benavidez et al. (Benavidez, P.G., et al. [2012]. 219, 57-76) are included. Because material characteristics can significantly affect breakups, we created two models - for monolithic asteroids and for rubble-piles. To explain the observed SFDs in the size range D = 1 to 10 km we have to also account for dynamical depletion due to the Yarkovsky effect. The assumption of (purely) rubble-pile asteroids leads to a significantly worse fit to the observed data, so that we can conclude that majority of main-belt asteroids are rather monolithic. Our work may also serve as a motivation for further SPH simulations of disruptions of smaller targets (with a parent body size of the order of 1 km). (en)
Title
  • A six-part collisional model of the main asteroid belt
  • A six-part collisional model of the main asteroid belt (en)
skos:prefLabel
  • A six-part collisional model of the main asteroid belt
  • A six-part collisional model of the main asteroid belt (en)
skos:notation
  • RIV/00216208:11320/14:10286599!RIV15-MSM-11320___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(GA13-01308S), S, Z(MSM0021620860)
http://linked.open...iv/cisloPeriodika
  • říjen
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 1185
http://linked.open...ai/riv/idVysledku
  • RIV/00216208:11320/14:10286599
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Solar System; Origin; Collisional physics; Asteroids (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • US - Spojené státy americké
http://linked.open...ontrolniKodProRIV
  • [5C5F8799BCAD]
http://linked.open...i/riv/nazevZdroje
  • Icarus
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 241
http://linked.open...iv/tvurceVysledku
  • Brož, Miroslav
  • Benavidez, P. G.
  • Cibulková, Helena
http://linked.open...ain/vavai/riv/wos
  • 000343617900026
http://linked.open...n/vavai/riv/zamer
issn
  • 0019-1035
number of pages
http://bibframe.org/vocab/doi
  • 10.1016/j.icarus.2014.07.016
http://localhost/t...ganizacniJednotka
  • 11320
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 85 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software