Attributes | Values |
---|
rdf:type
| |
rdfs:seeAlso
| |
Description
| - A d-dimensional simplex S is called a k-reptile if it can be tiled without overlaps by simplices S_1, S_2,..., S_k that are all congruent and similar to S. For d=2, k-reptile simplices (triangles) exist for many values of k and they have been completely characterized by Snover, Waiveris, and Williams. On the other hand, for d greater than 2, only one construction of k-reptile simplices is known, the Hill simplices, and it provides only k of the form m^d, m = 2, 3,.... We prove that for d greater than 2, k-reptile simplices (tetrahedra) exist only for k=m^3. This partially confirms a conjecture of Hertel, asserting that the only k-reptile tetrahedra are the Hill tetrahedra.
- A d-dimensional simplex S is called a k-reptile if it can be tiled without overlaps by simplices S_1, S_2,..., S_k that are all congruent and similar to S. For d=2, k-reptile simplices (triangles) exist for many values of k and they have been completely characterized by Snover, Waiveris, and Williams. On the other hand, for d greater than 2, only one construction of k-reptile simplices is known, the Hill simplices, and it provides only k of the form m^d, m = 2, 3,.... We prove that for d greater than 2, k-reptile simplices (tetrahedra) exist only for k=m^3. This partially confirms a conjecture of Hertel, asserting that the only k-reptile tetrahedra are the Hill tetrahedra. (en)
|
Title
| - On the nonexistence of k-reptile tetrahedra
- On the nonexistence of k-reptile tetrahedra (en)
|
skos:prefLabel
| - On the nonexistence of k-reptile tetrahedra
- On the nonexistence of k-reptile tetrahedra (en)
|
skos:notation
| - RIV/00216208:11320/11:10100601!RIV12-MSM-11320___
|
http://linked.open...avai/predkladatel
| |
http://linked.open...avai/riv/aktivita
| |
http://linked.open...avai/riv/aktivity
| - P(1M0545), S, Z(MSM0021620838)
|
http://linked.open...iv/cisloPeriodika
| |
http://linked.open...vai/riv/dodaniDat
| |
http://linked.open...aciTvurceVysledku
| |
http://linked.open.../riv/druhVysledku
| |
http://linked.open...iv/duvernostUdaju
| |
http://linked.open...titaPredkladatele
| |
http://linked.open...dnocenehoVysledku
| |
http://linked.open...ai/riv/idVysledku
| - RIV/00216208:11320/11:10100601
|
http://linked.open...riv/jazykVysledku
| |
http://linked.open.../riv/klicovaSlova
| - tetrahedra; k-reptile; nonexistence (en)
|
http://linked.open.../riv/klicoveSlovo
| |
http://linked.open...odStatuVydavatele
| - US - Spojené státy americké
|
http://linked.open...ontrolniKodProRIV
| |
http://linked.open...i/riv/nazevZdroje
| - Discrete and Computational Geometry
|
http://linked.open...in/vavai/riv/obor
| |
http://linked.open...ichTvurcuVysledku
| |
http://linked.open...cetTvurcuVysledku
| |
http://linked.open...vavai/riv/projekt
| |
http://linked.open...UplatneniVysledku
| |
http://linked.open...v/svazekPeriodika
| |
http://linked.open...iv/tvurceVysledku
| - Matoušek, Jiří
- Safernová, Zuzana
|
http://linked.open...ain/vavai/riv/wos
| |
http://linked.open...n/vavai/riv/zamer
| |
issn
| |
number of pages
| |
http://bibframe.org/vocab/doi
| - 10.1007/s00454-011-9334-z
|
http://localhost/t...ganizacniJednotka
| |
is http://linked.open...avai/riv/vysledek
of | |