Buď C kužel v 3-dimenzionálním prostoru, jehož základna je konvexní obrazec ve vodorovné rovině. Uvažují se pakování posunutých kopií C a -C. Dokazuje se, že každé takové pakování má hustotu nejvýš 1-c, kde c>0 je explicitní konstanta. To řeší otízku W. Kuperberga. (cs)
Let C be a cone in 3-space whose base B is a planar convex body in a horizontal plane. We consider a packing formed by translates of C and -C. We exhibit an explicit constant c>0 such that the density of any such packing is is smaller than 1-c, answering a question of Wlodek Kuperberg.
Let C be a cone in 3-space whose base B is a planar convex body in a horizontal plane. We consider a packing formed by translates of C and -C. We exhibit an explicit constant c>0 such that the density of any such packing is is smaller than 1-c, answering a question of Wlodek Kuperberg. (en)