About: Performance Analysis of Built-in Parallel Reduction’s Implementation in OpenMP C/C Language Extension     Goto   Sponge   Distinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Parallel reduction algorithms are frequent in high perfor- mance computing areas, thus, modern parallel programming toolkits and languages often offer support for these algorithms. This article discusses important implementation aspects of built-in support for parallel reduc- tion found in well-known OpenMP C/C++ language extension. It shows that the implementation in widely used GCC compiler is not efficient and suggests usage of custom reduction implementation improving the computational performance.
  • Parallel reduction algorithms are frequent in high perfor- mance computing areas, thus, modern parallel programming toolkits and languages often offer support for these algorithms. This article discusses important implementation aspects of built-in support for parallel reduc- tion found in well-known OpenMP C/C++ language extension. It shows that the implementation in widely used GCC compiler is not efficient and suggests usage of custom reduction implementation improving the computational performance. (en)
Title
  • Performance Analysis of Built-in Parallel Reduction’s Implementation in OpenMP C/C Language Extension
  • Performance Analysis of Built-in Parallel Reduction’s Implementation in OpenMP C/C Language Extension (en)
skos:prefLabel
  • Performance Analysis of Built-in Parallel Reduction’s Implementation in OpenMP C/C Language Extension
  • Performance Analysis of Built-in Parallel Reduction’s Implementation in OpenMP C/C Language Extension (en)
skos:notation
  • RIV/70883521:28140/14:43871608!RIV15-MSM-28140___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(ED2.1.00/03.0089)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 36125
http://linked.open...ai/riv/idVysledku
  • RIV/70883521:28140/14:43871608
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Extension; Language; C/C; OpenMP; Implementation; Reduction’s; Parallel; Built-in; Analysis; Performance (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [D0662F3FE519]
http://linked.open...v/mistoKonaniAkce
  • on-line
http://linked.open...i/riv/mistoVydani
  • Heidelberg
http://linked.open...i/riv/nazevZdroje
  • Advances in Intelligent Systems and Computing. 285
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Jašek, Roman
  • Bližňák, Michal
  • Dulík, Tomáš
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
issn
  • 2194-5357
number of pages
http://purl.org/ne...btex#hasPublisher
  • Springer-Verlag. Berlin
https://schema.org/isbn
  • 978-3-319-06739-1
http://localhost/t...ganizacniJednotka
  • 28140
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 84 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software