About: Globally Optimal Estimates for Geometric Reconstruction Problems     Goto   Sponge   Distinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • We introduce a framework for computing statistically optimal estimates of geometric reconstruction problems. While traditional algorithms often suffer from either local minima or non-optimality-or a combination of both-we pursue the goal of achieving global solutions of the statistically optimal cost-function. Our approach is based on a hierarchy of convex relaxations to solve non-convex optimization problems with polynomials. These convex relaxations generate a monotone sequence of lower bounds and we show how one can detect whether the global optimum is attained at a given relaxation. The technique is applied to a number of classical vision problems: triangulation, camera pose, homography estimation and last, but not least, epipolar geometry estimation. Experimental validation on both synthetic and real data is provided. In practice, only a few relaxations are needed for attaining the global optimum.
  • We introduce a framework for computing statistically optimal estimates of geometric reconstruction problems. While traditional algorithms often suffer from either local minima or non-optimality-or a combination of both-we pursue the goal of achieving global solutions of the statistically optimal cost-function. Our approach is based on a hierarchy of convex relaxations to solve non-convex optimization problems with polynomials. These convex relaxations generate a monotone sequence of lower bounds and we show how one can detect whether the global optimum is attained at a given relaxation. The technique is applied to a number of classical vision problems: triangulation, camera pose, homography estimation and last, but not least, epipolar geometry estimation. Experimental validation on both synthetic and real data is provided. In practice, only a few relaxations are needed for attaining the global optimum. (en)
  • Článek zavádí rámec pro výpočet statisticky optimálních odhadů v problémech geometrické rekonstrukce. Zatímco tradiční algoritmy často trpí díky lokálním minimům či neoptimalitě či kombinaci obou, my důsledně hledáme globální řešení statisticky optimální nákladové funkce. Náš přístup je založený na hierarchii konvexních relací řešících nekonvexní problémy s polynomy. Tyto konvexní relace generují monotónní posloupnost spodních ohraničení. Ukazujeme, jak je možné zjistit, zda globální optimum je dosaženo v takto daných omezeních. Tato technika je aplikována v řadě klasických vizuálních problémů jako triangulace, homograficky odhad, odhad epipolární geometrie atd. Výsledky jsme podložili experimentováním s umělými i realnými daty. V praxi je třeba jen pár omezení k dosažení globálního optima. (cs)
Title
  • Globally Optimal Estimates for Geometric Reconstruction Problems
  • Globální optimální odhady pro problémy geometrické rekonstrukce (cs)
  • Globally Optimal Estimates for Geometric Reconstruction Problems (en)
skos:prefLabel
  • Globally Optimal Estimates for Geometric Reconstruction Problems
  • Globální optimální odhady pro problémy geometrické rekonstrukce (cs)
  • Globally Optimal Estimates for Geometric Reconstruction Problems (en)
skos:notation
  • RIV/68407700:21230/07:03130318!RIV08-GA0-21230___
http://linked.open.../vavai/riv/strany
  • 3;15
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(GA102/05/0011), P(GA102/06/0652), P(ME 698)
http://linked.open...iv/cisloPeriodika
  • 1
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 423461
http://linked.open...ai/riv/idVysledku
  • RIV/68407700:21230/07:03130318
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • LMI relaxations; global optimization; non-convex optimization; semidefinite programming; structure from motion; triangulation (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • NL - Nizozemsko
http://linked.open...ontrolniKodProRIV
  • [D0FA4570E75F]
http://linked.open...i/riv/nazevZdroje
  • International Journal of Computer Vision
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 74
http://linked.open...iv/tvurceVysledku
  • Henrion, Didier
  • Kahl, F.
issn
  • 0920-5691
number of pages
http://localhost/t...ganizacniJednotka
  • 21230
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software