About: Globally Convergent Range Image Registration by Graph Kernel Algorithm     Goto   Sponge   Distinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Není k dispozici (cs)
  • Automatic range image registration without any knowledge of the viewpoint requires identification of common regions across different range images and then establishing point correspondences in these regions. We formulate this as a graph-based optimization problem. More specifically, we define a graph in which each vertex represents a putative match of two points, each edge represents binary consistency decision between two matches, and each edge orientation represents match quality from worse to better putative match. Then strict sub-kernel defined in the graph is maximized. The maximum strict sub-kernel algorithm enables us to uniquely determine the largest consistent matching of points. To evaluate the quality of a single match, we employ the histogram of triple products that are generated by all surface normals in a point neighborhood. Our experimental results show the effectiveness of our method for coarse range image registration.
  • Automatic range image registration without any knowledge of the viewpoint requires identification of common regions across different range images and then establishing point correspondences in these regions. We formulate this as a graph-based optimization problem. More specifically, we define a graph in which each vertex represents a putative match of two points, each edge represents binary consistency decision between two matches, and each edge orientation represents match quality from worse to better putative match. Then strict sub-kernel defined in the graph is maximized. The maximum strict sub-kernel algorithm enables us to uniquely determine the largest consistent matching of points. To evaluate the quality of a single match, we employ the histogram of triple products that are generated by all surface normals in a point neighborhood. Our experimental results show the effectiveness of our method for coarse range image registration. (en)
Title
  • Globally Convergent Range Image Registration by Graph Kernel Algorithm
  • Není k dispozici (cs)
  • Globally Convergent Range Image Registration by Graph Kernel Algorithm (en)
skos:prefLabel
  • Globally Convergent Range Image Registration by Graph Kernel Algorithm
  • Není k dispozici (cs)
  • Globally Convergent Range Image Registration by Graph Kernel Algorithm (en)
skos:notation
  • RIV/68407700:21230/05:03109907!RIV06-AV0-21230___
http://linked.open.../vavai/riv/strany
  • 377 ; 384
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(1ET101210406), P(ME 678)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 522804
http://linked.open...ai/riv/idVysledku
  • RIV/68407700:21230/05:03109907
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • computer graphics; computer vision; range image; registration (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [585BC2D201AA]
http://linked.open...v/mistoKonaniAkce
  • Ottawa
http://linked.open...i/riv/mistoVydani
  • Los Alamitos
http://linked.open...i/riv/nazevZdroje
  • 3DIM 2005: Proceedings of 5th International Conference on 3-D Digital Imaging and Modeling
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Šára, Radim
  • Sugimoto, A.
  • Okatani, I.
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
number of pages
http://purl.org/ne...btex#hasPublisher
  • IEEE Computer Society Press
https://schema.org/isbn
  • 0-7695-2327-7
http://localhost/t...ganizacniJednotka
  • 21230
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software