About: Stratified Dense Matching for Stereopsis in Complex Scenes     Goto   Sponge   Distinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Local joint image modeling in stereo matching brings more discriminable and stable matching features. Such features reduce the need for strong prior models (continuity) and thus algorithms that are less prone to false positive artefacts in general complex scenes can be applied. One of the principal quality factors in area-based dense stereo is the matching window shape. As it cannot be selected without having any initial matching hypothesis we propose a stratified matching approach. The window adapts to high-correlation structures in disparity space found in pre-matching which is then followed by final matching. In a rigorous ground-truth experiment we show that Stratified Dense Matching is able to increase matching density 3x, matching accuracy 1.8x, and occlusion boundary detection 2x as compared to a fixed-size rectangular windows algorithm. Performance on real outdoor complex scenes is also evaluated.
  • Local joint image modeling in stereo matching brings more discriminable and stable matching features. Such features reduce the need for strong prior models (continuity) and thus algorithms that are less prone to false positive artefacts in general complex scenes can be applied. One of the principal quality factors in area-based dense stereo is the matching window shape. As it cannot be selected without having any initial matching hypothesis we propose a stratified matching approach. The window adapts to high-correlation structures in disparity space found in pre-matching which is then followed by final matching. In a rigorous ground-truth experiment we show that Stratified Dense Matching is able to increase matching density 3x, matching accuracy 1.8x, and occlusion boundary detection 2x as compared to a fixed-size rectangular windows algorithm. Performance on real outdoor complex scenes is also evaluated. (en)
Title
  • Stratified Dense Matching for Stereopsis in Complex Scenes
  • Stratified Dense Matching for Stereopsis in Complex Scenes (en)
skos:prefLabel
  • Stratified Dense Matching for Stereopsis in Complex Scenes
  • Stratified Dense Matching for Stereopsis in Complex Scenes (en)
skos:notation
  • RIV/68407700:21230/03:03091295!RIV/2004/GA0/212304/N
http://linked.open.../vavai/riv/strany
  • 339 ; 348
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(GA102/01/1371), Z(MSM 212300013)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 629050
http://linked.open...ai/riv/idVysledku
  • RIV/68407700:21230/03:03091295
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • stereo matching (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [C76181BA8B04]
http://linked.open...v/mistoKonaniAkce
  • Norwich
http://linked.open...i/riv/mistoVydani
  • London
http://linked.open...i/riv/nazevZdroje
  • BMVC 2003: Proceedings of the 14th British Machine Vision Conference
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Šára, Radim
  • Kostková, Jana
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
http://linked.open...n/vavai/riv/zamer
number of pages
http://purl.org/ne...btex#hasPublisher
  • British Machine Vision Association
https://schema.org/isbn
  • 1-901725-23-5
http://localhost/t...ganizacniJednotka
  • 21230
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software