About: An operator is a product of two quasi-nilpotent operators if and only if it is not semi-Fredholm     Goto   Sponge   Distinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • We prove that a (bounded, linear) operator acting on an infinite-dimensional, separable, complex Hilbert space can be written as a product of two quasi-nilpotent operators if and only if it is not a semi-Fredholm operator. This solves the problem posed by Fong and Sourour in 1984. We also consider some closely related questions. In particular, we show that an operator can be expressed as a product of two nilpotent operators if and only if its kernel and co-kernel are both infinite dimensional. This answers the question implicitly posed by Wu in 1989.
  • We prove that a (bounded, linear) operator acting on an infinite-dimensional, separable, complex Hilbert space can be written as a product of two quasi-nilpotent operators if and only if it is not a semi-Fredholm operator. This solves the problem posed by Fong and Sourour in 1984. We also consider some closely related questions. In particular, we show that an operator can be expressed as a product of two nilpotent operators if and only if its kernel and co-kernel are both infinite dimensional. This answers the question implicitly posed by Wu in 1989. (en)
  • Je dokázáno, že operátor na Hilbertově prostoru je součinem dvou quasinilpotentních operátorů právě když není semi-Fredholmův. To řeší problém Fonga a Sourora z roku 1984. (cs)
Title
  • An operator is a product of two quasi-nilpotent operators if and only if it is not semi-Fredholm
  • Operátor je součinem dvou quasinilpotentů právě když není semi-Fredholmův (cs)
  • An operator is a product of two quasi-nilpotent operators if and only if it is not semi-Fredholm (en)
skos:prefLabel
  • An operator is a product of two quasi-nilpotent operators if and only if it is not semi-Fredholm
  • Operátor je součinem dvou quasinilpotentů právě když není semi-Fredholmův (cs)
  • An operator is a product of two quasi-nilpotent operators if and only if it is not semi-Fredholm (en)
skos:notation
  • RIV/67985840:_____/06:00047586!RIV07-AV0-67985840
http://linked.open.../vavai/riv/strany
  • 935;944
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(GA201/03/0041), Z(AV0Z10190503)
http://linked.open...iv/cisloPeriodika
  • 5
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 464827
http://linked.open...ai/riv/idVysledku
  • RIV/67985840:_____/06:00047586
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • products of operators; nilpotent operators; quasinilpotent operators (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • GB - Spojené království Velké Británie a Severního Irska
http://linked.open...ontrolniKodProRIV
  • [2D23D49A5555]
http://linked.open...i/riv/nazevZdroje
  • Proceedings of the Royal Society of Edinburgh. A - Mathematics
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 136A
http://linked.open...iv/tvurceVysledku
  • Müller, Vladimír
  • Drnovšek, R.
  • Novák, N.
http://linked.open...n/vavai/riv/zamer
issn
  • 0308-2105
number of pages
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 77 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software