Attributes | Values |
---|
rdf:type
| |
Description
| - We prove that a (bounded, linear) operator acting on an infinite-dimensional, separable, complex Hilbert space can be written as a product of two quasi-nilpotent operators if and only if it is not a semi-Fredholm operator. This solves the problem posed by Fong and Sourour in 1984. We also consider some closely related questions. In particular, we show that an operator can be expressed as a product of two nilpotent operators if and only if its kernel and co-kernel are both infinite dimensional. This answers the question implicitly posed by Wu in 1989.
- We prove that a (bounded, linear) operator acting on an infinite-dimensional, separable, complex Hilbert space can be written as a product of two quasi-nilpotent operators if and only if it is not a semi-Fredholm operator. This solves the problem posed by Fong and Sourour in 1984. We also consider some closely related questions. In particular, we show that an operator can be expressed as a product of two nilpotent operators if and only if its kernel and co-kernel are both infinite dimensional. This answers the question implicitly posed by Wu in 1989. (en)
- Je dokázáno, že operátor na Hilbertově prostoru je součinem dvou quasinilpotentních operátorů právě když není semi-Fredholmův. To řeší problém Fonga a Sourora z roku 1984. (cs)
|
Title
| - An operator is a product of two quasi-nilpotent operators if and only if it is not semi-Fredholm
- Operátor je součinem dvou quasinilpotentů právě když není semi-Fredholmův (cs)
- An operator is a product of two quasi-nilpotent operators if and only if it is not semi-Fredholm (en)
|
skos:prefLabel
| - An operator is a product of two quasi-nilpotent operators if and only if it is not semi-Fredholm
- Operátor je součinem dvou quasinilpotentů právě když není semi-Fredholmův (cs)
- An operator is a product of two quasi-nilpotent operators if and only if it is not semi-Fredholm (en)
|
skos:notation
| - RIV/67985840:_____/06:00047586!RIV07-AV0-67985840
|
http://linked.open.../vavai/riv/strany
| |
http://linked.open...avai/riv/aktivita
| |
http://linked.open...avai/riv/aktivity
| - P(GA201/03/0041), Z(AV0Z10190503)
|
http://linked.open...iv/cisloPeriodika
| |
http://linked.open...vai/riv/dodaniDat
| |
http://linked.open...aciTvurceVysledku
| |
http://linked.open.../riv/druhVysledku
| |
http://linked.open...iv/duvernostUdaju
| |
http://linked.open...titaPredkladatele
| |
http://linked.open...dnocenehoVysledku
| |
http://linked.open...ai/riv/idVysledku
| - RIV/67985840:_____/06:00047586
|
http://linked.open...riv/jazykVysledku
| |
http://linked.open.../riv/klicovaSlova
| - products of operators; nilpotent operators; quasinilpotent operators (en)
|
http://linked.open.../riv/klicoveSlovo
| |
http://linked.open...odStatuVydavatele
| - GB - Spojené království Velké Británie a Severního Irska
|
http://linked.open...ontrolniKodProRIV
| |
http://linked.open...i/riv/nazevZdroje
| - Proceedings of the Royal Society of Edinburgh. A - Mathematics
|
http://linked.open...in/vavai/riv/obor
| |
http://linked.open...ichTvurcuVysledku
| |
http://linked.open...cetTvurcuVysledku
| |
http://linked.open...vavai/riv/projekt
| |
http://linked.open...UplatneniVysledku
| |
http://linked.open...v/svazekPeriodika
| |
http://linked.open...iv/tvurceVysledku
| - Müller, Vladimír
- Drnovšek, R.
- Novák, N.
|
http://linked.open...n/vavai/riv/zamer
| |
issn
| |
number of pages
| |