About: Minimal L-infinity-type spaces on strictly pseudoconvex domains on which the Bergman projection is continuous     Goto   Sponge   Distinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Článek popisuje nejmenší prostor funkcí na silné pseudokonvexní oblasti s hladkou hranicí, který obsahuje všechny omezené funkce, jeho topologie je dána váženými sup-normami a Bergmanova projekce je na něm spojitá. Podobný výsledek je získán i pro vážené Bergmanovy projekce. (cs)
  • The paper describes the smallest space of functions on a smoothly bounded strictly pseudoconvex domain which contains all bounded functions, its topology is given by a family of weighted sup-norms, and the Bergman projection is continuous on it. We also obtain analogous assertions for weighted Bergman projections.
  • The paper describes the smallest space of functions on a smoothly bounded strictly pseudoconvex domain which contains all bounded functions, its topology is given by a family of weighted sup-norms, and the Bergman projection is continuous on it. We also obtain analogous assertions for weighted Bergman projections. (en)
Title
  • Minimal L-infinity-type spaces on strictly pseudoconvex domains on which the Bergman projection is continuous
  • Minimal L-infinity-type spaces on strictly pseudoconvex domains on which the Bergman projection is continuous (en)
  • Minimální prostory typu L-nekonečno na silně pseudokonvexních oblastech, na nichž je Bergmanova projekce spojitá (cs)
skos:prefLabel
  • Minimal L-infinity-type spaces on strictly pseudoconvex domains on which the Bergman projection is continuous
  • Minimal L-infinity-type spaces on strictly pseudoconvex domains on which the Bergman projection is continuous (en)
  • Minimální prostory typu L-nekonečno na silně pseudokonvexních oblastech, na nichž je Bergmanova projekce spojitá (cs)
skos:notation
  • RIV/67985840:_____/06:00041179!RIV07-AV0-67985840
http://linked.open.../vavai/riv/strany
  • 253;275
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(GA201/03/0041), P(IAA1019304), Z(AV0Z10190503)
http://linked.open...iv/cisloPeriodika
  • 2
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 485897
http://linked.open...ai/riv/idVysledku
  • RIV/67985840:_____/06:00041179
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Bergman projection; weighted supremum norms; locally convex space (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • US - Spojené státy americké
http://linked.open...ontrolniKodProRIV
  • [03028DD73FD0]
http://linked.open...i/riv/nazevZdroje
  • Houston Journal of Mathematics
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 32
http://linked.open...iv/tvurceVysledku
  • Engliš, Miroslav
  • Taskinen, J.
  • Hänninen, T.
http://linked.open...n/vavai/riv/zamer
issn
  • 0362-1588
number of pages
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 77 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software