About: Power bounded operators and supercyclic vectors     Goto   Sponge   Distinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Podle známé věty ( Brown-Chevreau-Pearcy ) každá kontrakce na Hilbertově prostoru, jejíž spektrum obsahuje jednotkovou kružnici, má netriviální invariantní podprostor. Tj. existuje nenulový necyklický vektor. Zde je ukázáno, že každý operátor s ohraničenými mocninami, jehož spektrální poloměr je roven 1, má nenulový vektor, který není supercyklický. (cs)
  • By the well-known result of Brown, Chevreau and Pearcy, every Hilbert space contraction with spectrum containing the unit circle has a nontrivial closed invariant subspace. Equivalently, there is a nonzero vector which is not cyclic. We show that each power bounded operator on a Hilbert space with spectral radius equal to one has a nonzero vector which is not supercyclic. Equivalently, the operator has a nontrivial closed invariant homogeneous subset.
  • By the well-known result of Brown, Chevreau and Pearcy, every Hilbert space contraction with spectrum containing the unit circle has a nontrivial closed invariant subspace. Equivalently, there is a nonzero vector which is not cyclic. We show that each power bounded operator on a Hilbert space with spectral radius equal to one has a nonzero vector which is not supercyclic. Equivalently, the operator has a nontrivial closed invariant homogeneous subset. (en)
Title
  • Power bounded operators and supercyclic vectors
  • Power bounded operators and supercyclic vectors (en)
  • Operátory s ohraničenými mocninami a supercyklické vektory (cs)
skos:prefLabel
  • Power bounded operators and supercyclic vectors
  • Power bounded operators and supercyclic vectors (en)
  • Operátory s ohraničenými mocninami a supercyklické vektory (cs)
skos:notation
  • RIV/67985840:_____/03:00106806!RIV/2005/GA0/A05005/N
http://linked.open.../vavai/riv/strany
  • 3807;3812
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(GA201/03/0041), Z(AV0Z1019905)
http://linked.open...iv/cisloPeriodika
  • 12
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 622169
http://linked.open...ai/riv/idVysledku
  • RIV/67985840:_____/03:00106806
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • supercyclic vector;invariant subspace problem;power bounded operator (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • US - Spojené státy americké
http://linked.open...ontrolniKodProRIV
  • [F5716B5E43A6]
http://linked.open...i/riv/nazevZdroje
  • Proceedings of the American Mathematical Society
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 131
http://linked.open...iv/tvurceVysledku
  • Müller, Vladimír
http://linked.open...n/vavai/riv/zamer
issn
  • 0002-9939
number of pages
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 77 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software