Attributes | Values |
---|
rdf:type
| |
Description
| - A method is described for obtaining conjunctive normal forms for logics using Gentzen-style rules possessing a special kind of strong invertibility. This method is then applied to a number of prominent fuzzy logics using hypersequent rules adapted from calculi defined in the literature. In particular, a normal form with simple McNaughton functions as literals is generated for łukasiewicz logic, and normal forms with simple implicational formulas as literals are obtained for Gödel logic, Product logic, and Cancellative hoop logic.
- A method is described for obtaining conjunctive normal forms for logics using Gentzen-style rules possessing a special kind of strong invertibility. This method is then applied to a number of prominent fuzzy logics using hypersequent rules adapted from calculi defined in the literature. In particular, a normal form with simple McNaughton functions as literals is generated for łukasiewicz logic, and normal forms with simple implicational formulas as literals are obtained for Gödel logic, Product logic, and Cancellative hoop logic. (en)
- Je popsána metoda konstrukce konjunktivní normální formy pro logiky s Gentzenovským důkazovým systémem, jež vykazuje vlastnost tzv. silné invertibility. Tato metoda je aplikována na řadu prominentních fuzzy logik a jejich hypersekventových systémů popsaných v literatuře. Konkrétně, pro Lukasiewiczovu logiku konstruujeme normální formu s literály intepretovanými pomocí tzv. jednoduchých McNaughtonovských funkcí, pro Godelovu a produktovou logiky (a také pro logiku CHL) konstruujeme normální formu s literály ve formě jednoduchých implikačních formulí. (cs)
|
Title
| - Normal Forms for Fuzzy Logics: A Proof-Theoretic Approach
- Normal Forms for Fuzzy Logics: A Proof-Theoretic Approach (en)
- Normální formy ve fuzzy logikách: důkazově-teoretický přístup (cs)
|
skos:prefLabel
| - Normal Forms for Fuzzy Logics: A Proof-Theoretic Approach
- Normal Forms for Fuzzy Logics: A Proof-Theoretic Approach (en)
- Normální formy ve fuzzy logikách: důkazově-teoretický přístup (cs)
|
skos:notation
| - RIV/67985807:_____/07:00088772!RIV08-AV0-67985807
|
http://linked.open.../vavai/riv/strany
| |
http://linked.open...avai/riv/aktivita
| |
http://linked.open...avai/riv/aktivity
| - P(1M0545), Z(AV0Z10300504)
|
http://linked.open...iv/cisloPeriodika
| |
http://linked.open...vai/riv/dodaniDat
| |
http://linked.open...aciTvurceVysledku
| |
http://linked.open.../riv/druhVysledku
| |
http://linked.open...iv/duvernostUdaju
| |
http://linked.open...titaPredkladatele
| |
http://linked.open...dnocenehoVysledku
| |
http://linked.open...ai/riv/idVysledku
| - RIV/67985807:_____/07:00088772
|
http://linked.open...riv/jazykVysledku
| |
http://linked.open.../riv/klicovaSlova
| - fuzzy logic; normal form; proof theory; hypersequents (en)
|
http://linked.open.../riv/klicoveSlovo
| |
http://linked.open...odStatuVydavatele
| - DE - Spolková republika Německo
|
http://linked.open...ontrolniKodProRIV
| |
http://linked.open...i/riv/nazevZdroje
| - Archive for Mathematical Logic
|
http://linked.open...in/vavai/riv/obor
| |
http://linked.open...ichTvurcuVysledku
| |
http://linked.open...cetTvurcuVysledku
| |
http://linked.open...vavai/riv/projekt
| |
http://linked.open...UplatneniVysledku
| |
http://linked.open...v/svazekPeriodika
| |
http://linked.open...iv/tvurceVysledku
| - Cintula, Petr
- Metcalfe, G.
|
http://linked.open...n/vavai/riv/zamer
| |
issn
| |
number of pages
| |