About: Normal Forms for Fuzzy Logics: A Proof-Theoretic Approach     Goto   Sponge   Distinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • A method is described for obtaining conjunctive normal forms for logics using Gentzen-style rules possessing a special kind of strong invertibility. This method is then applied to a number of prominent fuzzy logics using hypersequent rules adapted from calculi defined in the literature. In particular, a normal form with simple McNaughton functions as literals is generated for łukasiewicz logic, and normal forms with simple implicational formulas as literals are obtained for Gödel logic, Product logic, and Cancellative hoop logic.
  • A method is described for obtaining conjunctive normal forms for logics using Gentzen-style rules possessing a special kind of strong invertibility. This method is then applied to a number of prominent fuzzy logics using hypersequent rules adapted from calculi defined in the literature. In particular, a normal form with simple McNaughton functions as literals is generated for łukasiewicz logic, and normal forms with simple implicational formulas as literals are obtained for Gödel logic, Product logic, and Cancellative hoop logic. (en)
  • Je popsána metoda konstrukce konjunktivní normální formy pro logiky s Gentzenovským důkazovým systémem, jež vykazuje vlastnost tzv. silné invertibility. Tato metoda je aplikována na řadu prominentních fuzzy logik a jejich hypersekventových systémů popsaných v literatuře. Konkrétně, pro Lukasiewiczovu logiku konstruujeme normální formu s literály intepretovanými pomocí tzv. jednoduchých McNaughtonovských funkcí, pro Godelovu a produktovou logiky (a také pro logiku CHL) konstruujeme normální formu s literály ve formě jednoduchých implikačních formulí. (cs)
Title
  • Normal Forms for Fuzzy Logics: A Proof-Theoretic Approach
  • Normal Forms for Fuzzy Logics: A Proof-Theoretic Approach (en)
  • Normální formy ve fuzzy logikách: důkazově-teoretický přístup (cs)
skos:prefLabel
  • Normal Forms for Fuzzy Logics: A Proof-Theoretic Approach
  • Normal Forms for Fuzzy Logics: A Proof-Theoretic Approach (en)
  • Normální formy ve fuzzy logikách: důkazově-teoretický přístup (cs)
skos:notation
  • RIV/67985807:_____/07:00088772!RIV08-AV0-67985807
http://linked.open.../vavai/riv/strany
  • 347;363
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(1M0545), Z(AV0Z10300504)
http://linked.open...iv/cisloPeriodika
  • 5-6
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 437586
http://linked.open...ai/riv/idVysledku
  • RIV/67985807:_____/07:00088772
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • fuzzy logic; normal form; proof theory; hypersequents (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • DE - Spolková republika Německo
http://linked.open...ontrolniKodProRIV
  • [68E8983E9920]
http://linked.open...i/riv/nazevZdroje
  • Archive for Mathematical Logic
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 46
http://linked.open...iv/tvurceVysledku
  • Cintula, Petr
  • Metcalfe, G.
http://linked.open...n/vavai/riv/zamer
issn
  • 1432-0665
number of pages
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software