About: Extensional logic of hyperintensions     Goto   Sponge   Distinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • In this paper I describe an extensional logic of hyperintensions, viz. Tichý's Transparent Intensional Logic (TIL). TIL preserves transparency and compositionality in all kinds of context, and validates quantifying into all contexts, including intensional and hyperintensional ones. The availability of an extensional logic of hyperintensions defies the received view that an intensional (let alone hyperintensional) logic is one that fails to validate transparency, compositionality, and quantifying-in. The main features of our logic are that the senses and denotations of (non-indexical) terms and expressions remain invariant across contexts and that our ramified type theory enables quantification over any logical objects of any order. The syntax of TIL is the typed lambda calculus; its semantics is based on a procedural redefinition of, inter alia, functional abstraction and application. The only two non-standard features are a hyperintension (called Trivialization) that presents other hyperintensions and a four-place substitution function (called Sub) defined over hyperintensions.
  • In this paper I describe an extensional logic of hyperintensions, viz. Tichý's Transparent Intensional Logic (TIL). TIL preserves transparency and compositionality in all kinds of context, and validates quantifying into all contexts, including intensional and hyperintensional ones. The availability of an extensional logic of hyperintensions defies the received view that an intensional (let alone hyperintensional) logic is one that fails to validate transparency, compositionality, and quantifying-in. The main features of our logic are that the senses and denotations of (non-indexical) terms and expressions remain invariant across contexts and that our ramified type theory enables quantification over any logical objects of any order. The syntax of TIL is the typed lambda calculus; its semantics is based on a procedural redefinition of, inter alia, functional abstraction and application. The only two non-standard features are a hyperintension (called Trivialization) that presents other hyperintensions and a four-place substitution function (called Sub) defined over hyperintensions. (en)
Title
  • Extensional logic of hyperintensions
  • Extensional logic of hyperintensions (en)
skos:prefLabel
  • Extensional logic of hyperintensions
  • Extensional logic of hyperintensions (en)
skos:notation
  • RIV/61989100:27240/12:86087811!RIV14-MSM-27240___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • S
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 135918
http://linked.open...ai/riv/idVysledku
  • RIV/61989100:27240/12:86087811
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • transparent intensional logic; transparency; ramified type theory; Quantifying-in; extensional/intensional/hyperintensional context; extensional logic of hyperintensions (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [C17277E6A4E9]
http://linked.open...i/riv/mistoVydani
  • Berlin
http://linked.open...vEdiceCisloSvazku
  • Conceptual Modelling and Its Theoretical Foundations
http://linked.open...i/riv/nazevZdroje
  • Lecture Notes in Computer Science. Volume 7260
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...v/pocetStranKnihy
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Duží, Marie
number of pages
http://bibframe.org/vocab/doi
  • 10.1007/978-3-642-28279-9_19
http://purl.org/ne...btex#hasPublisher
  • Springer-Verlag
https://schema.org/isbn
  • 978-3-642-28278-2
http://localhost/t...ganizacniJednotka
  • 27240
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 77 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software