About: Problems and challenges of information resourcesproducers? clustering     Goto   Sponge   Distinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • Classically, unsupervised machine learning techniques are applied on data sets with fixednumber of attributes (variables). However, many problems encountered in the field of infor-metrics face us with the need to extend these kinds of methods in a way such that they maybe computed over a set of nonincreasingly ordered vectors of unequal lengths. Thus, in this paper, some new dissimilarity measures (metrics) are introduced and studied. Owing tothat we may use, e.g. hierarchical clustering algorithms in order to determine an input dataset?s partition consisting of sets of producers that are homogeneous not only with respect to the quality of information resources, but also their quantity.
  • Classically, unsupervised machine learning techniques are applied on data sets with fixednumber of attributes (variables). However, many problems encountered in the field of infor-metrics face us with the need to extend these kinds of methods in a way such that they maybe computed over a set of nonincreasingly ordered vectors of unequal lengths. Thus, in this paper, some new dissimilarity measures (metrics) are introduced and studied. Owing tothat we may use, e.g. hierarchical clustering algorithms in order to determine an input dataset?s partition consisting of sets of producers that are homogeneous not only with respect to the quality of information resources, but also their quantity. (en)
Title
  • Problems and challenges of information resourcesproducers? clustering
  • Problems and challenges of information resourcesproducers? clustering (en)
skos:prefLabel
  • Problems and challenges of information resourcesproducers? clustering
  • Problems and challenges of information resourcesproducers? clustering (en)
skos:notation
  • RIV/61988987:17610/15:A1501DLG!RIV15-MSM-17610___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • P(ED1.1.00/02.0070)
http://linked.open...iv/cisloPeriodika
  • 1
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 364
http://linked.open...ai/riv/idVysledku
  • RIV/61988987:17610/15:A1501DLG
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Aggregation; Hierarchical clustering; Distance; Metric (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • NL - Nizozemsko
http://linked.open...ontrolniKodProRIV
  • [DF06CE8D7EB2]
http://linked.open...i/riv/nazevZdroje
  • J INFORMETR
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 9
http://linked.open...iv/tvurceVysledku
  • Mesiar, Radko
  • Gagolewski, Marek
  • Cena, Anna
issn
  • 1751-1577
number of pages
http://localhost/t...ganizacniJednotka
  • 17610
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software