Attributes | Values |
---|
rdf:type
| |
Description
| - It was recently proved in that all rational hypocycloids and epicycloids are Pythagorean hodograph curves, i.e., rational curves with rational offsets. In this paper, we extend the discussion to a more general class of curves represented by trigonometric polynomial support functions. We show that these curves are offsets to translated convolutions of scaled and rotated hypocycloids and epicycloids. Using this result, we formulate a new and very simple G2 Hermite interpolation algorithm based on solving a small system of linear equations. The efficiency of the designed method is then presented on several examples. In particular, we show how to approximate general trochoids, which, as we prove, are not Pythagorean hodograph curves in general.
- It was recently proved in that all rational hypocycloids and epicycloids are Pythagorean hodograph curves, i.e., rational curves with rational offsets. In this paper, we extend the discussion to a more general class of curves represented by trigonometric polynomial support functions. We show that these curves are offsets to translated convolutions of scaled and rotated hypocycloids and epicycloids. Using this result, we formulate a new and very simple G2 Hermite interpolation algorithm based on solving a small system of linear equations. The efficiency of the designed method is then presented on several examples. In particular, we show how to approximate general trochoids, which, as we prove, are not Pythagorean hodograph curves in general. (en)
|
Title
| - G2 Hermite Interpolation with Curves Represented by Multi-valued Trigonometric Support Functions
- G2 Hermite Interpolation with Curves Represented by Multi-valued Trigonometric Support Functions (en)
|
skos:prefLabel
| - G2 Hermite Interpolation with Curves Represented by Multi-valued Trigonometric Support Functions
- G2 Hermite Interpolation with Curves Represented by Multi-valued Trigonometric Support Functions (en)
|
skos:notation
| - RIV/49777513:23520/12:43898297!RIV13-MSM-23520___
|
http://linked.open...avai/riv/aktivita
| |
http://linked.open...avai/riv/aktivity
| |
http://linked.open...iv/cisloPeriodika
| |
http://linked.open...vai/riv/dodaniDat
| |
http://linked.open...aciTvurceVysledku
| |
http://linked.open.../riv/druhVysledku
| |
http://linked.open...iv/duvernostUdaju
| |
http://linked.open...titaPredkladatele
| |
http://linked.open...dnocenehoVysledku
| |
http://linked.open...ai/riv/idVysledku
| - RIV/49777513:23520/12:43898297
|
http://linked.open...riv/jazykVysledku
| |
http://linked.open.../riv/klicovaSlova
| - Hypocycloids, epicycloids, Pythagorean hodograph curves, support function, Hermite Interpolation (en)
|
http://linked.open.../riv/klicoveSlovo
| |
http://linked.open...odStatuVydavatele
| - DE - Spolková republika Německo
|
http://linked.open...ontrolniKodProRIV
| |
http://linked.open...i/riv/nazevZdroje
| - Lecture Notes in Computer Science
|
http://linked.open...in/vavai/riv/obor
| |
http://linked.open...ichTvurcuVysledku
| |
http://linked.open...cetTvurcuVysledku
| |
http://linked.open...UplatneniVysledku
| |
http://linked.open...v/svazekPeriodika
| |
http://linked.open...iv/tvurceVysledku
| - Bastl, Bohumír
- Lávička, Miroslav
- Šír, Zbyněk
|
http://linked.open...n/vavai/riv/zamer
| |
issn
| |
number of pages
| |
http://bibframe.org/vocab/doi
| - 10.1007/978-3-642-27413-8_9
|
http://localhost/t...ganizacniJednotka
| |