About: Fast Approximate Spoken Term Detection from Sequence of Phonemes     Goto   Sponge   Distinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
Description
  • We investigate the detection of spoken terms in conversa-<br> tional speech using phoneme recognition with the objective<br> of achieving smaller index size as well as faster search speed.<br> Speech is processed and indexed as a sequence of one best<br> phoneme sequence. We propose the use of a probabilistic<br> pronunciation model for the search term to compensate for<br> the errors in the recognition of phonemes. This model is de-<br> rived using the pronunciation of the word and the phoneme<br> confusion matrix. Experiments are performed on the con-<br> versational telephone speech database distributed by NIST<br> for the 2006 spoken term detection. We achieve about 1500<br> times smaller index size and 14 times faster search speed<br> compared to the system using phoneme lattices, at the cost<br> of relatively lower detection performance.
  • We investigate the detection of spoken terms in conversa-<br> tional speech using phoneme recognition with the objective<br> of achieving smaller index size as well as faster search speed.<br> Speech is processed and indexed as a sequence of one best<br> phoneme sequence. We propose the use of a probabilistic<br> pronunciation model for the search term to compensate for<br> the errors in the recognition of phonemes. This model is de-<br> rived using the pronunciation of the word and the phoneme<br> confusion matrix. Experiments are performed on the con-<br> versational telephone speech database distributed by NIST<br> for the 2006 spoken term detection. We achieve about 1500<br> times smaller index size and 14 times faster search speed<br> compared to the system using phoneme lattices, at the cost<br> of relatively lower detection performance. (en)
Title
  • Fast Approximate Spoken Term Detection from Sequence of Phonemes
  • Fast Approximate Spoken Term Detection from Sequence of Phonemes (en)
skos:prefLabel
  • Fast Approximate Spoken Term Detection from Sequence of Phonemes
  • Fast Approximate Spoken Term Detection from Sequence of Phonemes (en)
skos:notation
  • RIV/00216305:26230/08:PU80187!RIV10-MSM-26230___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • Z(MSM0021630528)
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 367687
http://linked.open...ai/riv/idVysledku
  • RIV/00216305:26230/08:PU80187
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Spoken term detection, probabilistic pronunciation model, phoneme recognition, confusion matrix<br><br> (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...ontrolniKodProRIV
  • [A50D5FA7F991]
http://linked.open...v/mistoKonaniAkce
  • Singapur
http://linked.open...i/riv/mistoVydani
  • Singapore
http://linked.open...i/riv/nazevZdroje
  • The 31st Annual International ACM SIGIR Conference 20-24 July 2008, Singapore
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...UplatneniVysledku
http://linked.open...iv/tvurceVysledku
  • Heřmanský, Hynek
  • Szöke, Igor
  • Pinto, Joel
  • Prasanna, S.R.M.
http://linked.open...vavai/riv/typAkce
http://linked.open.../riv/zahajeniAkce
http://linked.open...n/vavai/riv/zamer
number of pages
http://purl.org/ne...btex#hasPublisher
  • Association for Computing Machinery
https://schema.org/isbn
  • 978-90-365-2697-5
http://localhost/t...ganizacniJednotka
  • 26230
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 112 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software