Attributes | Values |
---|
rdf:type
| |
Description
| - Středem pozornosti programovacích technik určených k řešení problémů operačního výzkumu, teorie grafů a mnoha dalších oblastí je, jak navrhnout vhodné algoritmy a jak analyzovat jejich efektivitu. Vedle skutečnosti, že mnohé problémy lze řešit více či méně efektivně různými algoritmy, jejich efektivitu lze rovněž ovlivnit použitými datovými strukturami. V příspěvku prezentujeme jednoduchý algoritmus pro řešení problému hledání minimální kostry grafu a jeho efektivnější implementaci využívající binární hhaldu. Tento algoritmus je dále použit jako aproximace pro řešení Steinerova problému v grafech, který patří do třídy NP-těžkých problémů. (cs)
- The focus of programming techniques for solving problems of operations research, graph theory, and many others areas is on how to design good algorithms and how to analyse their efficiency. Besides the fact that many problems can be solved more or less efficiently by various algorithms, their implementation efficiency can also be controlled by used data structures. In this paper, we present a simple algorithm for solving the minimum spanning tree problem and its more efficient implementation using a binnary heap. This procedure is also used for an approximation algorithm of solving the network Steiner tree problem that belongs to the class of NP-hard problems.
- The focus of programming techniques for solving problems of operations research, graph theory, and many others areas is on how to design good algorithms and how to analyse their efficiency. Besides the fact that many problems can be solved more or less efficiently by various algorithms, their implementation efficiency can also be controlled by used data structures. In this paper, we present a simple algorithm for solving the minimum spanning tree problem and its more efficient implementation using a binnary heap. This procedure is also used for an approximation algorithm of solving the network Steiner tree problem that belongs to the class of NP-hard problems. (en)
|
Title
| - Data Structures and Time Complexity of Algorithms
- Data Structures and Time Complexity of Algorithms (en)
- Datové struktury a časová složitost algoritmů (cs)
|
skos:prefLabel
| - Data Structures and Time Complexity of Algorithms
- Data Structures and Time Complexity of Algorithms (en)
- Datové struktury a časová složitost algoritmů (cs)
|
skos:notation
| - RIV/00216305:26210/05:PU53765!RIV06-MSM-26210___
|
http://linked.open.../vavai/riv/strany
| |
http://linked.open...avai/riv/aktivita
| |
http://linked.open...avai/riv/aktivity
| |
http://linked.open...vai/riv/dodaniDat
| |
http://linked.open...aciTvurceVysledku
| |
http://linked.open.../riv/druhVysledku
| |
http://linked.open...iv/duvernostUdaju
| |
http://linked.open...titaPredkladatele
| |
http://linked.open...dnocenehoVysledku
| |
http://linked.open...ai/riv/idVysledku
| - RIV/00216305:26210/05:PU53765
|
http://linked.open...riv/jazykVysledku
| |
http://linked.open.../riv/klicovaSlova
| - priority queue, binary heap, spanning tree, Steiner tree (en)
|
http://linked.open.../riv/klicoveSlovo
| |
http://linked.open...ontrolniKodProRIV
| |
http://linked.open...v/mistoKonaniAkce
| |
http://linked.open...i/riv/mistoVydani
| |
http://linked.open...i/riv/nazevZdroje
| - Proceedings of the 4th International Conference Aplimat
|
http://linked.open...in/vavai/riv/obor
| |
http://linked.open...ichTvurcuVysledku
| |
http://linked.open...cetTvurcuVysledku
| |
http://linked.open...UplatneniVysledku
| |
http://linked.open...iv/tvurceVysledku
| |
http://linked.open...vavai/riv/typAkce
| |
http://linked.open.../riv/zahajeniAkce
| |
http://linked.open...n/vavai/riv/zamer
| |
number of pages
| |
http://purl.org/ne...btex#hasPublisher
| - Slovenská technická univerzita v Bratislave
|
https://schema.org/isbn
| |
http://localhost/t...ganizacniJednotka
| |