About: Reconstructing projective modules from its trace ideal     Goto   Sponge   Distinct   Permalink

An Entity of Type : http://linked.opendata.cz/ontology/domain/vavai/Vysledek, within Data Space : linked.opendata.cz associated with source document(s)

AttributesValues
rdf:type
rdfs:seeAlso
Description
  • We make a detailed study of idempotent ideals that are traces of countably generated projective right modules. We associate to such ideals an ascending chain of finitely generated left ideals and, dually, a descending chain of cofinitely generated right ideals. The study of the first sequence allows us to characterize trace ideals of projective modules and to show that projective modules can always be lifted modulo the trace ideal of a projective module. As a consequence we give some new classification results of (countably generated) projective modules over particular classes of semilocal rings. The study of the second sequence leads us to consider projective modules over noetherian FCR-algebras; we make some constructions of non-trivial projective modules showing that over such rings the behavior of countably generated projective modules that are not direct sum of finitely generated ones is, in general, quite complex.
  • We make a detailed study of idempotent ideals that are traces of countably generated projective right modules. We associate to such ideals an ascending chain of finitely generated left ideals and, dually, a descending chain of cofinitely generated right ideals. The study of the first sequence allows us to characterize trace ideals of projective modules and to show that projective modules can always be lifted modulo the trace ideal of a projective module. As a consequence we give some new classification results of (countably generated) projective modules over particular classes of semilocal rings. The study of the second sequence leads us to consider projective modules over noetherian FCR-algebras; we make some constructions of non-trivial projective modules showing that over such rings the behavior of countably generated projective modules that are not direct sum of finitely generated ones is, in general, quite complex. (en)
Title
  • Reconstructing projective modules from its trace ideal
  • Reconstructing projective modules from its trace ideal (en)
skos:prefLabel
  • Reconstructing projective modules from its trace ideal
  • Reconstructing projective modules from its trace ideal (en)
skos:notation
  • RIV/00216208:11320/14:10287253!RIV15-MSM-11320___
http://linked.open...avai/riv/aktivita
http://linked.open...avai/riv/aktivity
  • I, P(GA201/09/0816), P(GBP201/12/G028)
http://linked.open...iv/cisloPeriodika
  • 2014
http://linked.open...vai/riv/dodaniDat
http://linked.open...aciTvurceVysledku
http://linked.open.../riv/druhVysledku
http://linked.open...iv/duvernostUdaju
http://linked.open...titaPredkladatele
http://linked.open...dnocenehoVysledku
  • 41625
http://linked.open...ai/riv/idVysledku
  • RIV/00216208:11320/14:10287253
http://linked.open...riv/jazykVysledku
http://linked.open.../riv/klicovaSlova
  • Idempotent ideal; FCR-algebras; Trace ideal; Projective modules; Ring (en)
http://linked.open.../riv/klicoveSlovo
http://linked.open...odStatuVydavatele
  • US - Spojené státy americké
http://linked.open...ontrolniKodProRIV
  • [6F50C4A84DB8]
http://linked.open...i/riv/nazevZdroje
  • Journal of Algebra
http://linked.open...in/vavai/riv/obor
http://linked.open...ichTvurcuVysledku
http://linked.open...cetTvurcuVysledku
http://linked.open...vavai/riv/projekt
http://linked.open...UplatneniVysledku
http://linked.open...v/svazekPeriodika
  • 416
http://linked.open...iv/tvurceVysledku
  • Příhoda, Pavel
  • Herbera, D.
http://linked.open...ain/vavai/riv/wos
  • 000339696400002
issn
  • 0021-8693
number of pages
http://bibframe.org/vocab/doi
  • 10.1016/j.jalgebra.2014.06.010
http://localhost/t...ganizacniJednotka
  • 11320
Faceted Search & Find service v1.16.118 as of Jun 21 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 07.20.3240 as of Jun 21 2024, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (126 GB total memory, 84 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software