Attributes | Values |
---|
rdf:type
| |
rdfs:seeAlso
| |
Description
| - Drinfeld recently suggested to replace projective modules by the flat Mittag-Leffler ones in the definition of an infinite dimensional vector bundle on a scheme X (Drinfeld, 2006 [8]). Two questions arise: (1) What is the structure of the class D of all flat Mittag-Leffler modules over a general ring? (2) Can flat Mittag-Leffler modules be used to build a Quillen model category structure on the category of all chain complexes of quasi-coherent sheaves on X? We answer (1) by showing that a module M is flat Mittag-Leffler, if and only if M is N-1-projective in the sense of Eklof and Mekler (2002) [10]. We use this to characterize the rings such that Disclosed under products, and relate the classes of all Mittag-Leffler, strict Mittag-Leffler, and separable modules. Then we prove that the class D is not deconstructible for any non-right perfect ring. So unlike the classes of all projective and flat modules, the class D does not admit the homotopy theory tools developed recently by Hovey (2002) [26]. This gives a negative answer to (2).
- Drinfeld recently suggested to replace projective modules by the flat Mittag-Leffler ones in the definition of an infinite dimensional vector bundle on a scheme X (Drinfeld, 2006 [8]). Two questions arise: (1) What is the structure of the class D of all flat Mittag-Leffler modules over a general ring? (2) Can flat Mittag-Leffler modules be used to build a Quillen model category structure on the category of all chain complexes of quasi-coherent sheaves on X? We answer (1) by showing that a module M is flat Mittag-Leffler, if and only if M is N-1-projective in the sense of Eklof and Mekler (2002) [10]. We use this to characterize the rings such that Disclosed under products, and relate the classes of all Mittag-Leffler, strict Mittag-Leffler, and separable modules. Then we prove that the class D is not deconstructible for any non-right perfect ring. So unlike the classes of all projective and flat modules, the class D does not admit the homotopy theory tools developed recently by Hovey (2002) [26]. This gives a negative answer to (2). (en)
|
Title
| - Almost free modules and Mittag-Leffler conditions
- Almost free modules and Mittag-Leffler conditions (en)
|
skos:prefLabel
| - Almost free modules and Mittag-Leffler conditions
- Almost free modules and Mittag-Leffler conditions (en)
|
skos:notation
| - RIV/00216208:11320/12:10128135!RIV13-GA0-11320___
|
http://linked.open...avai/riv/aktivita
| |
http://linked.open...avai/riv/aktivity
| - P(GA201/09/0816), Z(MSM0021620839)
|
http://linked.open...iv/cisloPeriodika
| |
http://linked.open...vai/riv/dodaniDat
| |
http://linked.open...aciTvurceVysledku
| |
http://linked.open.../riv/druhVysledku
| |
http://linked.open...iv/duvernostUdaju
| |
http://linked.open...titaPredkladatele
| |
http://linked.open...dnocenehoVysledku
| |
http://linked.open...ai/riv/idVysledku
| - RIV/00216208:11320/12:10128135
|
http://linked.open...riv/jazykVysledku
| |
http://linked.open.../riv/klicovaSlova
| - Quasi-coherent sheaf; Model category structure; Kaplansky class; Deconstructible class; N-1-Projective module; Mittag-Leffler module (en)
|
http://linked.open.../riv/klicoveSlovo
| |
http://linked.open...odStatuVydavatele
| - US - Spojené státy americké
|
http://linked.open...ontrolniKodProRIV
| |
http://linked.open...i/riv/nazevZdroje
| |
http://linked.open...in/vavai/riv/obor
| |
http://linked.open...ichTvurcuVysledku
| |
http://linked.open...cetTvurcuVysledku
| |
http://linked.open...vavai/riv/projekt
| |
http://linked.open...UplatneniVysledku
| |
http://linked.open...v/svazekPeriodika
| |
http://linked.open...iv/tvurceVysledku
| - Trlifaj, Jan
- Herbera, Dolors
|
http://linked.open...ain/vavai/riv/wos
| |
http://linked.open...n/vavai/riv/zamer
| |
issn
| |
number of pages
| |
http://bibframe.org/vocab/doi
| - 10.1016/j.aim.2012.02.013
|
http://localhost/t...ganizacniJednotka
| |