Attributes | Values |
---|
rdf:type
| |
rdfs:seeAlso
| |
Description
| - We prove that there exists a countable family of continuous real functions whose graphs together with their inverses cover an uncountable square, i.e. a set of the form $X\times X$, where $X\subs\Err$ is uncountable. This extends Sierpiński''s theorem from 1919, saying that $S\times S$ can be covered by countably many graphs of functions and inverses of functions if and only if $|S|\loe\aleph_1$. Using forcing and absoluteness arguments, we also prove the existence of countably many $1$-Lipschitz functions on the Cantor set endowed with the standard non-archimedean metric that cover an uncountable square.
- We prove that there exists a countable family of continuous real functions whose graphs together with their inverses cover an uncountable square, i.e. a set of the form $X\times X$, where $X\subs\Err$ is uncountable. This extends Sierpiński''s theorem from 1919, saying that $S\times S$ can be covered by countably many graphs of functions and inverses of functions if and only if $|S|\loe\aleph_1$. Using forcing and absoluteness arguments, we also prove the existence of countably many $1$-Lipschitz functions on the Cantor set endowed with the standard non-archimedean metric that cover an uncountable square. (en)
|
Title
| - Covering an uncountable square by countably many continuous functions
- Covering an uncountable square by countably many continuous functions (en)
|
skos:prefLabel
| - Covering an uncountable square by countably many continuous functions
- Covering an uncountable square by countably many continuous functions (en)
|
skos:notation
| - RIV/00216208:11320/12:10103608!RIV13-AV0-11320___
|
http://linked.open...avai/riv/aktivita
| |
http://linked.open...avai/riv/aktivity
| - P(IAA100190901), S, Z(AV0Z10190503)
|
http://linked.open...iv/cisloPeriodika
| |
http://linked.open...vai/riv/dodaniDat
| |
http://linked.open...aciTvurceVysledku
| |
http://linked.open.../riv/druhVysledku
| |
http://linked.open...iv/duvernostUdaju
| |
http://linked.open...titaPredkladatele
| |
http://linked.open...dnocenehoVysledku
| |
http://linked.open...ai/riv/idVysledku
| - RIV/00216208:11320/12:10103608
|
http://linked.open...riv/jazykVysledku
| |
http://linked.open.../riv/klicovaSlova
| - set of cardinality $\aleph_1$; covering by continuous functions; Uncountable square (en)
|
http://linked.open.../riv/klicoveSlovo
| |
http://linked.open...odStatuVydavatele
| - US - Spojené státy americké
|
http://linked.open...ontrolniKodProRIV
| |
http://linked.open...i/riv/nazevZdroje
| - Proceedings of the American Mathematical Society
|
http://linked.open...in/vavai/riv/obor
| |
http://linked.open...ichTvurcuVysledku
| |
http://linked.open...cetTvurcuVysledku
| |
http://linked.open...vavai/riv/projekt
| |
http://linked.open...UplatneniVysledku
| |
http://linked.open...v/svazekPeriodika
| |
http://linked.open...iv/tvurceVysledku
| - Kubiś, Wieslaw
- Vejnar, Benjamin
|
http://linked.open...ain/vavai/riv/wos
| |
http://linked.open...n/vavai/riv/zamer
| |
issn
| |
number of pages
| |
http://bibframe.org/vocab/doi
| - 10.1090/S0002-9939-2012-11292-4
|
http://localhost/t...ganizacniJednotka
| |